Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA.
Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA.
Cell Metab. 2021 Feb 2;33(2):367-378.e5. doi: 10.1016/j.cmet.2020.12.020. Epub 2021 Jan 19.
Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body.
糖酵解在机体代谢中起着核心作用,但哺乳动物组织中糖酵解的定量输入仍不清楚。在这里,我们使用小鼠中的 C 追踪来定量糖酵解中间产物的来源:循环葡萄糖、组织内糖原和循环糖异生前体。循环葡萄糖是循环乳酸的主要来源,也是组织糖酵解的主要终产物。然而,循环葡萄糖仅高度标记少数组织中的糖酵解中间产物:血液、脾脏、膈肌和比目鱼肌。大部分组织中的糖酵解中间产物,包括肝脏和四头肌,来自糖原。糖异生的贡献较小,但也广泛存在于糖酵解中间产物中,其通量在生理进食(而非高胰岛素钳夹)时仍然存在。进食不是抑制糖异生,而是激活循环葡萄糖和乳酸的氧化,以维持葡萄糖稳态。因此,大部分身体缓慢分解内部储存的糖原,而一些组织则快速将循环葡萄糖分解为乳酸,以供全身氧化。