Suppr超能文献

定量分析葡萄糖对三羧酸循环的生理贡献。

Quantitative Analysis of the Physiological Contributions of Glucose to the TCA Cycle.

机构信息

Computational Biology and Bioinformatics Program, Duke Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.

Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.

出版信息

Cell Metab. 2020 Oct 6;32(4):619-628.e21. doi: 10.1016/j.cmet.2020.09.005. Epub 2020 Sep 21.

Abstract

The nutritional source for catabolism in the tricarboxylic acid (TCA) cycle is a fundamental question in metabolic physiology. Limited by data and mathematical analysis, controversy exists. Using isotope-labeling data in vivo across several experimental conditions, we construct multiple models of central carbon metabolism and develop methods based on metabolic flux analysis (MFA) to solve for the preferences of glucose, lactate, and other nutrients used in the TCA cycle. We show that in nearly all circumstances, glucose contributes more than lactate as a substrate to the TCA cycle. This conclusion is verified in different animal strains from different studies and different administrations of C glucose, and is extended to multiple tissue types. Thus, this quantitative analysis of organismal metabolism defines the relative contributions of nutrient fluxes in physiology, provides a resource for analysis of in vivo isotope tracing data, and concludes that glucose is the major nutrient used in mammals.

摘要

三羧酸(TCA)循环中的分解代谢的营养来源是代谢生理学中的一个基本问题。由于受到数据和数学分析的限制,存在争议。本研究使用了多种实验条件下的同位素标记数据,构建了多个中心碳代谢模型,并开发了基于代谢通量分析(MFA)的方法,以确定葡萄糖、乳酸等用于 TCA 循环的营养物质的偏好性。结果表明,在几乎所有情况下,葡萄糖作为 TCA 循环的底物的贡献都大于乳酸。这一结论在来自不同研究和不同 C 葡萄糖给药的不同动物品系中得到了验证,并扩展到了多种组织类型。因此,这种对机体代谢的定量分析定义了营养物质通量在生理学中的相对贡献,为体内同位素示踪数据的分析提供了资源,并得出结论,葡萄糖是哺乳动物中主要使用的营养物质。

相似文献

1
Quantitative Analysis of the Physiological Contributions of Glucose to the TCA Cycle.
Cell Metab. 2020 Oct 6;32(4):619-628.e21. doi: 10.1016/j.cmet.2020.09.005. Epub 2020 Sep 21.
2
The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle.
J Biol Chem. 2019 Jun 14;294(24):9615-9630. doi: 10.1074/jbc.RA119.007841. Epub 2019 Apr 30.
3
Glucose feeds the TCA cycle via circulating lactate.
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
4
Quantitative Fluxomics of Circulating Metabolites.
Cell Metab. 2020 Oct 6;32(4):676-688.e4. doi: 10.1016/j.cmet.2020.07.013. Epub 2020 Aug 12.
5
7
8
Comprehensive metabolic modeling of multiple 13C-isotopomer data sets to study metabolism in perfused working hearts.
Am J Physiol Heart Circ Physiol. 2016 Oct 1;311(4):H881-H891. doi: 10.1152/ajpheart.00428.2016. Epub 2016 Aug 5.
10
Computational quantification of metabolic fluxes from a single isotope snapshot: application to an animal biopsy.
Bioinformatics. 2010 Mar 1;26(5):653-60. doi: 10.1093/bioinformatics/btq018. Epub 2010 Jan 22.

引用本文的文献

4
Quantitation of metabolic activity from isotope tracing data using automated methodology.
Nat Metab. 2024 Dec;6(12):2207-2209. doi: 10.1038/s42255-024-01144-2.
6
AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine.
Cell Res. 2024 Oct;34(10):683-706. doi: 10.1038/s41422-024-00985-6. Epub 2024 Jun 19.
7
Metabolic rewiring and communication in cancer immunity.
Cell Chem Biol. 2024 May 16;31(5):862-883. doi: 10.1016/j.chembiol.2024.02.001. Epub 2024 Feb 29.
8
Study on the metabolic process of phthalic acid driven proliferation of .
Front Plant Sci. 2023 Oct 11;14:1266916. doi: 10.3389/fpls.2023.1266916. eCollection 2023.
10
Tracing metabolic flux in vivo: basic model structures of tracer methodology.
Exp Mol Med. 2022 Sep;54(9):1311-1322. doi: 10.1038/s12276-022-00814-z. Epub 2022 Sep 8.

本文引用的文献

1
Metabolite Exchange between Mammalian Organs Quantified in Pigs.
Cell Metab. 2019 Sep 3;30(3):594-606.e3. doi: 10.1016/j.cmet.2019.06.002. Epub 2019 Jun 27.
2
Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer.
Nat Commun. 2019 Jun 20;10(1):2701. doi: 10.1038/s41467-019-10427-2.
4
Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-Mediated Enhancement of Anabolic Synthesis.
Circulation. 2019 Apr 2;139(14):1725-1740. doi: 10.1161/CIRCULATIONAHA.118.037803.
5
6
Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids.
Cell Metab. 2019 Feb 5;29(2):417-429.e4. doi: 10.1016/j.cmet.2018.10.013. Epub 2018 Nov 15.
7
Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals.
Cell. 2018 Oct 4;175(2):502-513.e13. doi: 10.1016/j.cell.2018.08.040. Epub 2018 Sep 20.
8
Glucose feeds the TCA cycle via circulating lactate.
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
9
Lactate Metabolism in Human Lung Tumors.
Cell. 2017 Oct 5;171(2):358-371.e9. doi: 10.1016/j.cell.2017.09.019.
10
A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product.
Cell Metab. 2017 Oct 3;26(4):648-659.e8. doi: 10.1016/j.cmet.2017.08.017. Epub 2017 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验