Suppr超能文献

葡萄糖通过循环的乳酸为三羧酸循环提供能量。

Glucose feeds the TCA cycle via circulating lactate.

作者信息

Hui Sheng, Ghergurovich Jonathan M, Morscher Raphael J, Jang Cholsoon, Teng Xin, Lu Wenyun, Esparza Lourdes A, Reya Tannishtha, Yanxiang Guo Jessie, White Eileen, Rabinowitz Joshua D

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.

Abstract

Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.

摘要

哺乳动物组织由循环的营养物质提供能量,这些营养物质包括葡萄糖、氨基酸和各种中间代谢产物。在有氧条件下,通常认为葡萄糖会被组织通过三羧酸循环(TCA循环)完全燃烧生成二氧化碳。另外,葡萄糖也可以通过糖酵解进行无氧分解代谢生成乳酸,而乳酸本身也是组织和肿瘤的潜在营养物质。循环中的乳酸或其他代谢中间产物作为能量来源的定量相关性仍不清楚。在此,我们系统地研究了小鼠体内循环代谢物的通量,发现乳酸可以是TCA循环碳的主要来源,进而也是能量的主要来源。静脉输注碳标记的营养物质显示,以摩尔为基础,乳酸的循环周转通量在所有代谢物中是最高的,在喂食小鼠中比葡萄糖的通量高1.1倍,在禁食小鼠中高2.5倍;乳酸主要由葡萄糖生成,但也有其他来源。在喂食和禁食的小鼠中,碳标记的乳酸广泛标记了所有组织中的TCA循环中间产物。定量分析表明,在禁食状态下,除大脑外,所有组织中葡萄糖对组织TCA代谢的贡献主要是间接的(通过循环乳酸)。在禁食小鼠的基因工程肺癌和胰腺癌肿瘤中,循环乳酸对TCA循环中间产物的贡献超过了葡萄糖,在胰腺癌中谷氨酰胺的贡献比乳酸更大。因此,糖酵解和TCA循环在乳酸水平上是解偶联的,乳酸是大多数组织和肿瘤中主要的循环TCA底物。

相似文献

1
Glucose feeds the TCA cycle via circulating lactate.
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
2
Effect of exogenous lactate on rat glioma metabolism.
J Neurosci Res. 2001 Sep 15;65(6):543-8. doi: 10.1002/jnr.1184.
5
The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle.
J Biol Chem. 2019 Jun 14;294(24):9615-9630. doi: 10.1074/jbc.RA119.007841. Epub 2019 Apr 30.
6
Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.
Glia. 2015 Dec;63(12):2313-26. doi: 10.1002/glia.22895. Epub 2015 Jul 29.
7
Quantitative Fluxomics of Circulating Metabolites.
Cell Metab. 2020 Oct 6;32(4):676-688.e4. doi: 10.1016/j.cmet.2020.07.013. Epub 2020 Aug 12.
8
High extracellular lactate causes reductive carboxylation in breast tissue cell lines grown under normoxic conditions.
PLoS One. 2019 Jun 10;14(6):e0213419. doi: 10.1371/journal.pone.0213419. eCollection 2019.
9
Glutamate synthesis has to be matched by its degradation - where do all the carbons go?
J Neurochem. 2014 Nov;131(4):399-406. doi: 10.1111/jnc.12812. Epub 2014 Jul 23.
10
Lactate Metabolism in Human Lung Tumors.
Cell. 2017 Oct 5;171(2):358-371.e9. doi: 10.1016/j.cell.2017.09.019.

引用本文的文献

1
Rewiring of cortical glucose metabolism fuels human brain cancer growth.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09460-7.
2
Lactate Metabolism in Health and Disease.
Adv Exp Med Biol. 2025;1478:573-613. doi: 10.1007/978-3-031-88361-3_24.
3
Role of Histone Lactylation in Neurological Disorders.
Int J Mol Sci. 2025 Aug 18;26(16):7949. doi: 10.3390/ijms26167949.
4
Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases.
Biomolecules. 2025 Aug 16;15(8):1178. doi: 10.3390/biom15081178.
5
Lactate metabolic reprogramming and histone lactylation modification in sepsis.
Int J Biol Sci. 2025 Jul 28;21(11):5034-5055. doi: 10.7150/ijbs.116088. eCollection 2025.
6
Spatial isotope deep tracing deciphers inter-tissue metabolic crosstalk.
Nat Commun. 2025 Aug 26;16(1):7934. doi: 10.1038/s41467-025-63243-2.
8
H4K79 and H4K91 histone lactylation, newly identified lactylation sites enriched in breast cancer.
J Exp Clin Cancer Res. 2025 Aug 23;44(1):252. doi: 10.1186/s13046-025-03512-6.

本文引用的文献

1
Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.
Science. 2016 Sep 9;353(6304):1161-5. doi: 10.1126/science.aaf5171.
2
Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer.
Cell Metab. 2016 Mar 8;23(3):517-28. doi: 10.1016/j.cmet.2016.01.007. Epub 2016 Feb 4.
3
Metabolic Heterogeneity in Human Lung Tumors.
Cell. 2016 Feb 11;164(4):681-94. doi: 10.1016/j.cell.2015.12.034. Epub 2016 Feb 4.
4
The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes.
PLoS One. 2015 Mar 27;10(3):e0122818. doi: 10.1371/journal.pone.0122818. eCollection 2015.
5
A roadmap for interpreting (13)C metabolite labeling patterns from cells.
Curr Opin Biotechnol. 2015 Aug;34:189-201. doi: 10.1016/j.copbio.2015.02.003. Epub 2015 Feb 28.
6
An isotope-dilution, GC-MS assay for formate and its application to human and animal metabolism.
Amino Acids. 2014 Aug;46(8):1885-91. doi: 10.1007/s00726-014-1738-7. Epub 2014 Apr 10.
7
Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer.
PLoS One. 2013 Sep 12;8(9):e75154. doi: 10.1371/journal.pone.0075154. eCollection 2013.
8
MMMDB: Mouse Multiple Tissue Metabolome Database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D809-14. doi: 10.1093/nar/gkr1170. Epub 2011 Dec 1.
9
Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments.
Dis Model Mech. 2011 Nov;4(6):727-32. doi: 10.1242/dmm.007724.
10
Enhanced fatty acid flux triggered by adiponectin overexpression.
Endocrinology. 2012 Jan;153(1):113-22. doi: 10.1210/en.2011-1339. Epub 2011 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验