London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
Parasit Vectors. 2021 Jan 20;14(1):67. doi: 10.1186/s13071-020-04572-7.
The DeWorm3 project is an ongoing cluster-randomised trial assessing the feasibility of interrupting the transmission of soil-transmitted helminths (STH) through mass drug administration (MDA) using study sites in India, Malawi and Benin. In this article, we describe an approach which uses a combination of statistical and mathematical methods to forecast the outcome of the trial with respect to its stated goal of reducing the prevalence of infection to below 2%.
Our approach is first to define the local patterns of transmission within each study site, which is achieved by statistical inference of key epidemiological parameters using the baseline epidemiological measures of age-related prevalence and intensity of STH infection which have been collected by the DeWorm3 trials team. We use these inferred parameters to calibrate an individual-based stochastic simulation of the trial at the cluster and study site level, which is subsequently run to forecast the future prevalence of STH infections. The simulator takes into account both the uncertainties in parameter estimation and the variability inherent in epidemiological and demographic processes in the simulator. We interpret the forecast results from our simulation with reference to the stated goal of the DeWorm3 trial, to achieve a target of [Formula: see text] prevalence at a point 24 months post-cessation of MDA.
Simulated output predicts that the two arms will be distinguishable from each other in all three country sites at the study end point. In India and Malawi, measured prevalence in the intervention arm is below the threshold with a high probability (90% and 95%, respectively), but in Benin the heterogeneity between clusters prevents the arm prevalence from being reduced below the threshold value. At the level of individual study arms within each site, heterogeneity among clusters leads to a very low probability of achieving complete elimination in an intervention arm, yielding a post-study scenario with widespread elimination but a few 'hot spot' areas of persisting STH transmission.
Our results suggest that geographical heterogeneities in transmission intensity and worm aggregation have a large impact on the effect of MDA. It is important to accurately assess cluster-level, or even smaller scale, heterogeneities in factors which influence transmission and aggregation for a clearer perspective on projecting the outcomes of MDA control of STH and other neglected tropical diseases.
DeWorm3 项目是一项正在进行的整群随机试验,旨在评估通过大规模药物治疗(MDA)来阻断土壤传播性蠕虫(STH)传播的可行性,该试验在印度、马拉维和贝宁设立了研究点。在本文中,我们描述了一种方法,该方法结合了统计和数学方法,根据试验的既定目标(将感染率降低到 2%以下)预测试验结果。
我们的方法首先是在每个研究点定义传播的局部模式,这是通过使用 DeWorm3 试验团队收集的与年龄相关的 STH 感染流行率和强度的基线流行病学测量值,对关键流行病学参数进行统计推断来实现的。我们使用这些推断出的参数来校准基于个体的集群和研究点级别的试验随机模拟,然后运行该模拟来预测未来 STH 感染的流行率。模拟器考虑了参数估计的不确定性以及模拟器中流行病学和人口统计学过程固有的可变性。我们根据 DeWorm3 试验的既定目标来解释模拟的预测结果,以实现 MDA 停止后 24 个月时[Formula: see text]流行率的目标。
模拟输出预测,在所有三个国家的研究终点,两个组在所有方面都将彼此区分开来。在印度和马拉维,干预组的测量流行率很可能低于阈值(分别为 90%和 95%),但在贝宁,集群之间的异质性阻止了臂流行率降低到阈值以下。在每个地点的个别研究臂层面上,集群之间的异质性导致干预臂完全消除的可能性非常低,导致研究后出现广泛消除但存在少数 STH 传播“热点”区域的情况。
我们的结果表明,传播强度和蠕虫聚集的地理异质性对 MDA 的效果有很大影响。准确评估影响传播和聚集的集群级甚至更小规模的异质性,对于更清晰地预测 MDA 控制 STH 和其他被忽视的热带病的结果非常重要。