Chemistry Department, Université du Québec à Montréal, Montreal, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Quebec, Canada; Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Sainte-Hyacinthe, Canada.
UR892 VIM, Equipe Virus Influenza, Université Paris-Saclay, INRAE, Jouy-en-Josas, France.
Biomaterials. 2021 Feb;269:120672. doi: 10.1016/j.biomaterials.2021.120672. Epub 2021 Jan 11.
Proteinaceous nanostructures have emerged as a promising strategy to develop safe and efficient subunit vaccines. The ability of synthetic β-sheet self-assembling peptides to stabilize antigenic determinants and to potentiate the epitope-specific immune responses have highlighted their potential as an immunostimulating platform for antigen delivery. Nonetheless, the intrinsic polymorphism of the resulting cross-β fibrils, their length in the microscale and their close structural similarity with pathological amyloids could limit their usage in vaccinology. In this study, we harnessed electrostatic capping motifs to control the self-assembly of a chimeric peptide comprising a 10-mer β-sheet sequence and a highly conserved epitope derived from the influenza A virus (M2e). Self-assembly led to the formation of 100-200 nm long uniform nanorods (NRs) displaying the M2e epitope on their surface. These cross-β assemblies differed from prototypical amyloid fibrils owing to low polydispersity, short length, non-binding to thioflavin T and Congo Red dyes, and incapacity to seed homologous amyloid assembly. M2e-NRs were efficiently uptaken by antigen presenting cells and the cross-β quaternary architecture activated the Toll-like receptor 2 and stimulated dendritic cells. Mice subcutaneous immunization revealed a robust M2e-specific IgG response, which was dependent on self-assembly into NRs. Upon intranasal immunization in combination with the polymeric adjuvant montanide gel, M2e-NRs conferred complete protection with absence of clinical signs against a lethal experimental infection with the H1N1 influenza A virus. These findings indicate that by acting as an immunostimulator and delivery system, synthetic peptide-based NRs constitute a versatile self-adjuvanted nanoplatform for the delivery of subunit vaccines.
蛋白质纳米结构已成为开发安全有效的亚单位疫苗的一种很有前途的策略。合成β-折叠自组装肽稳定抗原决定簇和增强表位特异性免疫反应的能力突出了它们作为抗原递送免疫刺激平台的潜力。尽管如此,所得的交叉-β原纤维的固有多态性、其在微尺度上的长度以及与病理淀粉样蛋白的紧密结构相似性,可能限制了它们在疫苗学中的应用。在这项研究中,我们利用静电帽状结构域来控制一种嵌合肽的自组装,该肽由 10 个残基β-折叠序列和来自流感 A 病毒(M2e)的高度保守表位组成。自组装导致形成 100-200nm 长的均匀纳米棒(NRs),其表面显示出 M2e 表位。这些交叉-β组装物与典型的淀粉样纤维不同,因为它们具有低多分散性、短长度、不与硫黄素 T 和刚果红染料结合以及不能引发同源淀粉样蛋白组装。M2e-NRs 被抗原呈递细胞有效摄取,并且交叉-β四级结构激活 Toll 样受体 2 并刺激树突状细胞。皮下免疫小鼠揭示了强大的 M2e 特异性 IgG 反应,该反应依赖于自组装成 NRs。在与聚合物佐剂 montanide 凝胶联合进行鼻内免疫时,M2e-NRs 赋予完全保护作用,没有临床症状,可抵抗致命性的 H1N1 流感 A 病毒实验感染。这些发现表明,通过作为免疫刺激剂和递送系统,基于合成肽的 NR 构成了一种多功能自佐剂纳米平台,用于递送亚单位疫苗。