Suppr超能文献

开发和验证一种用于研究 3D 细胞培养中治疗剂的计算机工具。

Development and validation of an in-silico tool for the study of therapeutic agents in 3D cell cultures.

机构信息

BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Italy.

Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.

出版信息

Comput Biol Med. 2021 Mar;130:104211. doi: 10.1016/j.compbiomed.2021.104211. Epub 2021 Jan 13.

Abstract

Computational models constitute a fundamental asset for cancer research and drug R&D, as they provide controlled environments for testing of hypotheses and are characterized by the total knowledge of the system. These features are particularly useful for 3D cell culture models where a complex interaction among cells and their environments ensues. In this work, we present a programmable simulator capable of reproducing the behavior of cells cultured in 3D scaffolds and their response to pharmacological treatment. This system will be shown to be able to accurately describe the temporal evolution of the density of a population of MDA-MB-231 cells following their treatment with different concentrations of doxorubicin, together with a newly described drug-resistance mechanism and potential re-sensitization strategy. An extensive technical description of this model will be coupled to its experimental validation and to an analysis aimed at identifying which variables and behaviors account for differences in the response to treatment. Comprehensively, this work contributes to the growing field of integrated in-silico/in-vitro analysis of biological processes which has great potential for both the increase of our scientific knowledge and the development of novel, more effective treatments.

摘要

计算模型是癌症研究和药物研发的重要资产,因为它们为假设测试提供了受控环境,并且具有系统的全部知识特征。这些功能对于 3D 细胞培养模型特别有用,因为细胞及其环境之间会发生复杂的相互作用。在这项工作中,我们提出了一种可编程模拟器,能够重现培养在 3D 支架中的细胞的行为及其对药物治疗的反应。该系统将被证明能够准确描述 MDA-MB-231 细胞在不同浓度阿霉素处理后的群体密度的时间演化,以及新描述的耐药机制和潜在的再敏化策略。将对该模型进行广泛的技术描述,并结合其实验验证和旨在确定哪些变量和行为导致对治疗反应差异的分析。总之,这项工作为生物过程的集成计算模型/体外分析领域做出了贡献,该领域对于增加我们的科学知识和开发新的、更有效的治疗方法具有巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验