Suppr超能文献

从 到 :一个用于从真实图像数据生成虚拟组织模拟的流程。

From to : a pipeline for generating virtual tissue simulations from real image data.

作者信息

Nürnberg Elina, Vitacolonna Mario, Bruch Roman, Reischl Markus, Rudolf Rüdiger, Sauer Simeon

机构信息

Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.

Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.

出版信息

Front Mol Biosci. 2024 Sep 10;11:1467366. doi: 10.3389/fmolb.2024.1467366. eCollection 2024.

Abstract

3D cell culture models replicate tissue complexity and aim to study cellular interactions and responses in a more physiologically relevant environment compared to traditional 2D cultures. However, the spherical structure of these models makes it difficult to extract meaningful data, necessitating advanced techniques for proper analysis. In silico simulations enhance research by predicting cellular behaviors and therapeutic responses, providing a powerful tool to complement experimental approaches. Despite their potential, these simulations often require advanced computational skills and significant resources, which creates a barrier for many researchers. To address these challenges, we developed an accessible pipeline using open-source software to facilitate virtual tissue simulations. Our approach employs the Cellular Potts Model, a versatile framework for simulating cellular behaviors in tissues. The simulations are constructed from real world 3D image stacks of cancer spheroids, ensuring that the virtual models are rooted in experimental data. By introducing a new metric for parameter optimization, we enable the creation of realistic simulations without requiring extensive computational expertise. This pipeline benefits researchers wanting to incorporate computational biology into their methods, even if they do not possess extensive expertise in this area. By reducing the technical barriers associated with advanced computational modeling, our pipeline enables more researchers to utilize these powerful tools. Our approach aims to foster a broader use of methods in disease research, contributing to a deeper understanding of disease biology and the refinement of therapeutic interventions.

摘要

3D细胞培养模型能够复制组织的复杂性,旨在与传统的二维培养相比,在更接近生理状态的环境中研究细胞间的相互作用和反应。然而,这些模型的球形结构使得提取有意义的数据变得困难,因此需要先进的技术来进行恰当的分析。计算机模拟通过预测细胞行为和治疗反应来加强研究,为补充实验方法提供了一个强大的工具。尽管具有潜力,但这些模拟通常需要先进的计算技能和大量资源,这给许多研究人员造成了障碍。为应对这些挑战,我们开发了一种使用开源软件的便捷流程,以促进虚拟组织模拟。我们的方法采用细胞Potts模型,这是一个用于模拟组织中细胞行为的通用框架。模拟是根据癌症球体的真实3D图像堆栈构建的,确保虚拟模型基于实验数据。通过引入一种用于参数优化的新指标,我们能够创建逼真的模拟,而无需广泛的计算专业知识。即使研究人员在该领域没有广泛的专业知识,这个流程也能使他们将计算生物学纳入其方法中。通过减少与先进计算建模相关的技术障碍,我们的流程使更多研究人员能够利用这些强大的工具。我们的方法旨在促进疾病研究中这些方法的更广泛应用,有助于更深入地理解疾病生物学并优化治疗干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39ca/11440074/bd9dfad6a6eb/fmolb-11-1467366-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验