Suppr超能文献

CAFD:利用机器学习实现传感器故障的上下文感知故障诊断方案。

CAFD: Context-Aware Fault Diagnostic Scheme towards Sensor Faults Utilizing Machine Learning.

机构信息

School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea.

School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.

出版信息

Sensors (Basel). 2021 Jan 17;21(2):617. doi: 10.3390/s21020617.

Abstract

Sensors' existence as a key component of Cyber-Physical Systems makes it susceptible to failures due to complex environments, low-quality production, and aging. When defective, sensors either stop communicating or convey incorrect information. These unsteady situations threaten the safety, economy, and reliability of a system. The objective of this study is to construct a lightweight machine learning-based fault detection and diagnostic system within the limited energy resources, memory, and computation of a Wireless Sensor Network (WSN). In this paper, a Context-Aware Fault Diagnostic (CAFD) scheme is proposed based on an ensemble learning algorithm called Extra-Trees. To evaluate the performance of the proposed scheme, a realistic WSN scenario composed of humidity and temperature sensor observations is replicated with extreme low-intensity faults. Six commonly occurring types of sensor fault are considered: drift, hard-over/bias, spike, erratic/precision degradation, stuck, and data-loss. The proposed CAFD scheme reveals the ability to accurately detect and diagnose low-intensity sensor faults in a timely manner. Moreover, the efficiency of the Extra-Trees algorithm in terms of diagnostic accuracy, F1-score, ROC-AUC, and training time is demonstrated by comparison with cutting-edge machine learning algorithms: a Support Vector Machine and a Neural Network.

摘要

传感器作为网络物理系统的关键组成部分,由于复杂的环境、低质量的生产和老化等因素,容易出现故障。当出现故障时,传感器要么停止通信,要么传递错误信息。这些不稳定的情况会威胁到系统的安全性、经济性和可靠性。本研究旨在为无线传感器网络(WSN)有限的能源资源、内存和计算能力构建基于机器学习的轻量级故障检测和诊断系统。本文提出了一种基于集成学习算法 Extra-Trees 的上下文感知故障诊断(CAFD)方案。为了评估所提出方案的性能,使用具有极低强度故障的湿度和温度传感器观测值复制了一个现实的 WSN 场景。考虑了六种常见的传感器故障类型:漂移、硬故障/偏差、尖峰、波动/精度下降、卡住和数据丢失。所提出的 CAFD 方案能够及时准确地检测和诊断低强度传感器故障。此外,通过与前沿机器学习算法(支持向量机和神经网络)进行比较,证明了 Extra-Trees 算法在诊断准确性、F1 分数、ROC-AUC 和训练时间方面的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d72/7830358/8dd50e72ebae/sensors-21-00617-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验