IEEE Trans Cybern. 2019 Apr;49(4):1475-1488. doi: 10.1109/TCYB.2018.2804940. Epub 2018 Mar 1.
Anomaly detection has attracted much attention in recent years since it plays a crucial role in many domains. Various anomaly detection approaches have been proposed, among which one-class support vector machine (OCSVM) is a popular one. In practice, data used for anomaly detection can be distributively collected via wireless sensor networks. Besides, as the data usually arrive at the nodes sequentially, online detection method that can process streaming data is preferred. In this paper, we formulate a distributed online OCSVM for anomaly detection over networks and get a decentralized cost function. To get the decentralized implementation without transmitting the original data, we use a random approximate function to replace the kernel function. Furthermore, to find an appropriate approximate dimension, we add a sparse constraint into the decentralized cost function to get another one. Then we minimize these two cost functions by stochastic gradient descent and derive two distributed algorithms. Some theoretical analysis and experiments are performed to show the effectiveness of the proposed algorithms. Experimental results on both synthetic and real datasets reveal that both of the proposed algorithms achieve low misdetection rates and high true positive rates. Compared with other state-of-the-art anomaly detection methods, the proposed distributed algorithms not only show good anomaly detection performance, but also require relatively short running time and low CPU memory consumption.
近年来,异常检测因其在许多领域中起着至关重要的作用而受到了广泛关注。已经提出了各种异常检测方法,其中一种流行的方法是单类支持向量机(OCSVM)。在实践中,用于异常检测的数据可以通过无线传感器网络分布式收集。此外,由于数据通常按顺序到达节点,因此首选可以处理流数据的在线检测方法。在本文中,我们为网络上的异常检测制定了一个分布式在线 OCSVM,并得到了一个分散的代价函数。为了在不传输原始数据的情况下获得分散式实现,我们使用随机近似函数来替代核函数。此外,为了找到合适的近似维度,我们将稀疏约束添加到分散的代价函数中以获得另一个函数。然后,我们通过随机梯度下降来最小化这两个代价函数,并推导出两个分布式算法。进行了一些理论分析和实验以证明所提出算法的有效性。在合成和真实数据集上的实验结果表明,所提出的两种算法都具有较低的误报率和较高的真阳性率。与其他最先进的异常检测方法相比,所提出的分布式算法不仅表现出良好的异常检测性能,而且还需要相对较短的运行时间和较低的 CPU 内存消耗。