Suppr超能文献

结合空间和深度卷积特征的自动皮质下脑结构分割。

Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features.

机构信息

Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, Girona, 17003, Spain.

出版信息

Med Image Anal. 2018 Aug;48:177-186. doi: 10.1016/j.media.2018.06.006. Epub 2018 Jun 15.

Abstract

Sub-cortical brain structure segmentation in Magnetic Resonance Images (MRI) has attracted the interest of the research community for a long time as morphological changes in these structures are related to different neurodegenerative disorders. However, manual segmentation of these structures can be tedious and prone to variability, highlighting the need for robust automated segmentation methods. In this paper, we present a novel convolutional neural network based approach for accurate segmentation of the sub-cortical brain structures that combines both convolutional and prior spatial features for improving the segmentation accuracy. In order to increase the accuracy of the automated segmentation, we propose to train the network using a restricted sample selection to force the network to learn the most difficult parts of the structures. We evaluate the accuracy of the proposed method on the public MICCAI 2012 challenge and IBSR 18 datasets, comparing it with different traditional and deep learning state-of-the-art methods. On the MICCAI 2012 dataset, our method shows an excellent performance comparable to the best participant strategy on the challenge, while performing significantly better than state-of-the-art techniques such as FreeSurfer and FIRST. On the IBSR 18 dataset, our method also exhibits a significant increase in the performance with respect to not only FreeSurfer and FIRST, but also comparable or better results than other recent deep learning approaches. Moreover, our experiments show that both the addition of the spatial priors and the restricted sampling strategy have a significant effect on the accuracy of the proposed method. In order to encourage the reproducibility and the use of the proposed method, a public version of our approach is available to download for the neuroimaging community.

摘要

磁共振成像(MRI)中皮质下脑结构分割一直以来都受到研究界的关注,因为这些结构的形态变化与不同的神经退行性疾病有关。然而,这些结构的手动分割可能很繁琐且容易出现差异,这凸显了需要强大的自动化分割方法。在本文中,我们提出了一种新的基于卷积神经网络的方法,用于准确分割皮质下脑结构,该方法结合了卷积和先验空间特征,以提高分割准确性。为了提高自动化分割的准确性,我们建议使用受限样本选择来训练网络,迫使网络学习结构中最困难的部分。我们在公共 MICCAI 2012 挑战赛和 IBSR 18 数据集上评估了所提出方法的准确性,将其与不同的传统和深度学习最新方法进行了比较。在 MICCAI 2012 数据集上,我们的方法表现出与挑战赛中最佳参与者策略相当的出色性能,而比 FreeSurfer 和 FIRST 等最新技术表现得更好。在 IBSR 18 数据集上,我们的方法与 FreeSurfer 和 FIRST 相比,不仅在性能上有显著提高,而且与其他最近的深度学习方法相比,也有可比或更好的结果。此外,我们的实验表明,添加空间先验和受限采样策略对所提出方法的准确性都有显著影响。为了鼓励重现性和使用所提出的方法,我们提供了一个公共版本的方法,供神经影像学社区下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验