Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
ISME J. 2021 Jun;15(6):1794-1809. doi: 10.1038/s41396-020-00887-6. Epub 2021 Jan 21.
Microbial communities involving dehalogenating bacteria assist in bioremediation of areas contaminated with halocarbons. To understand molecular interactions between dehalogenating bacteria, we co-cultured Sulfurospirillum multivorans, dechlorinating tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE), and Dehalococcoides mccartyi strains BTF08 or 195, dehalogenating PCE to ethene. The co-cultures were cultivated with lactate as electron donor. In co-cultures, the bacterial cells formed aggregates and D. mccartyi established an unusual, barrel-like morphology. An extracellular matrix surrounding bacterial cells in the aggregates enhanced cell-to-cell contact. PCE was dehalogenated to ethene at least three times faster in the co-culture. The dehalogenation was carried out via PceA of S. multivorans, and PteA (a recently described PCE dehalogenase) and VcrA of D. mccartyi BTF08, as supported by protein abundance. The co-culture was not dependent on exogenous hydrogen and acetate, suggesting a syntrophic relationship in which the obligate hydrogen consumer D. mccartyi consumes hydrogen and acetate produced by S. multivorans. The cobamide cofactor of the reductive dehalogenase-mandatory for D. mccartyi-was also produced by S. multivorans. D. mccartyi strain 195 dechlorinated cDCE in the presence of norpseudo-B produced by S. multivorans, but D. mccartyi strain BTF08 depended on an exogenous lower cobamide ligand. This observation is important for bioremediation, since cofactor supply in the environment might be a limiting factor for PCE dehalogenation to ethene, described for D. mccartyi exclusively. The findings from this co-culture give new insights into aggregate formation and the physiology of D. mccartyi within a bacterial community.
涉及脱卤细菌的微生物群落有助于受卤代烃污染的区域的生物修复。为了了解脱卤细菌之间的分子相互作用,我们共培养了脱硫弧菌,将四氯乙烯(PCE)脱氯为顺-1,2-二氯乙烯(cDCE),以及脱卤代酸梭菌菌株 BTF08 或 195,将 PCE 脱氯为乙烯。共培养物以乳酸作为电子供体进行培养。在共培养物中,细菌细胞形成聚集体,D. mccartyi 形成了一种不寻常的桶状形态。聚集体中围绕细菌细胞的细胞外基质增强了细胞间的接触。PCE 在共培养物中脱氯为乙烯的速度至少快了三倍。脱卤作用是通过 S. multivorans 的 PceA 以及 D. mccartyi BTF08 的 PteA(最近描述的 PCE 脱卤酶)和 VcrA 进行的,这得到了蛋白质丰度的支持。共培养物不依赖于外源氢和乙酸,这表明存在一种共生关系,其中专性氢消费者 D. mccartyi 消耗由 S. multivorans 产生的氢和乙酸。还原性脱卤酶必需的 cobamide 辅因子也由 S. multivorans 产生。D. mccartyi 菌株 195 在由 S. multivorans 产生的 norpseudo-B 的存在下脱氯 cDCE,但 D. mccartyi 菌株 BTF08 依赖于外源较低的 cobamide 配体。这一观察结果对于生物修复很重要,因为环境中辅助因子的供应可能是 PCE 脱氯为乙烯的限制因素,这是专门针对 D. mccartyi 描述的。该共培养物的研究结果为细菌群落中 D. mccartyi 的聚集形成和生理学提供了新的见解。