Suppr超能文献

盐度决定了协同降解有机卤代污染物的菌群的性能、功能种群和微生物生态。

Salinity determines performance, functional populations, and microbial ecology in consortia attenuating organohalide pollutants.

机构信息

Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.

NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.

出版信息

ISME J. 2023 May;17(5):660-670. doi: 10.1038/s41396-023-01377-1. Epub 2023 Feb 10.

Abstract

Organohalide pollutants are prevalent in coastal regions due to extensive intervention by anthropogenic activities, threatening public health and ecosystems. Gradients in salinity are a natural feature of coasts, but their impacts on the environmental fate of organohalides and the underlying microbial communities remain poorly understood. Here we report the effects of salinity on microbial reductive dechlorination of tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) in consortia derived from distinct environments (freshwater and marine sediments). Marine-derived microcosms exhibited higher halotolerance during PCE and PCB dechlorination, and a halotolerant dechlorinating culture was enriched from these microcosms. The organohalide-respiring bacteria (OHRB) responsible for PCE and PCB dechlorination in marine microcosms shifted from Dehalococcoides to Dehalobium when salinity increased. Broadly, lower microbial diversity, simpler co-occurrence networks, and more deterministic microbial community assemblages were observed under higher salinity. Separately, we observed that inhibition of dechlorination by high salinity could be attributed to suppressed viability of Dehalococcoides rather than reduced provision of substrates by syntrophic microorganisms. Additionally, the high activity of PCE dechlorinating reductive dehalogenases (RDases) in in vitro tests under high salinity suggests that high salinity likely disrupted cellular components other than RDases in Dehalococcoides. Genomic analyses indicated that the capability of Dehalobium to perform dehalogenation under high salinity was likely owing to the presence of genes associated with halotolerance in its genomes. Collectively, these mechanistic and ecological insights contribute to understanding the fate and bioremediation of organohalide pollutants in environments with changing salinity.

摘要

有机卤代污染物由于人类活动的广泛干预而在沿海地区普遍存在,威胁着公共健康和生态系统。盐度梯度是海岸的自然特征,但它们对有机卤化物的环境归宿和潜在微生物群落的影响仍知之甚少。在这里,我们报告了盐度对源自不同环境(淡水和海洋沉积物)的微生物共代谢还原脱氯四氯乙烯(PCE)和多氯联苯(PCBs)的影响。海洋衍生的微宇宙在 PCE 和 PCB 脱氯过程中表现出更高的耐盐性,并且从这些微宇宙中富集了耐盐脱氯培养物。负责海洋微宇宙中 PCE 和 PCB 脱氯的有机卤代物呼吸细菌(OHRB)在盐度增加时从 Dehalococcoides 转变为 Dehalobium。总的来说,在较高盐度下,观察到微生物多样性较低,共生网络较简单,以及更确定的微生物群落组合。另外,我们观察到高盐度抑制脱氯作用可能归因于 Dehalococcoides 的活力受到抑制,而不是共生微生物提供的底物减少。此外,在高盐度下进行的体外测试中,PCE 脱氯还原脱卤酶(RDases)的高活性表明,高盐度可能破坏了 Dehalococcoides 细胞内除 RDases 以外的其他成分。基因组分析表明,Dehalobium 在高盐度下进行脱卤的能力可能归因于其基因组中存在与耐盐性相关的基因。总的来说,这些机制和生态见解有助于理解在盐度不断变化的环境中有机卤代污染物的归宿和生物修复。

相似文献

引用本文的文献

本文引用的文献

9
Environmental occurrence and remediation of emerging organohalides: A review.新兴有机卤化物的环境发生与修复:综述。
Environ Pollut. 2021 Dec 1;290:118060. doi: 10.1016/j.envpol.2021.118060. Epub 2021 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验