Suppr超能文献

引入一种结合不同化合物相似性标准的新型活性悬崖类别。

Introducing a new category of activity cliffs combining different compound similarity criteria.

作者信息

Hu Huabin, Bajorath Jürgen

机构信息

Department of Life Science Informatics, B-IT , LIMES Program Unit Chemical Biology and Medicinal Chemistry , Rheinische Friedrich-Wilhelms-Universität , Endenicher Allee 19c , D-53115 Bonn , Germany . Email:

出版信息

RSC Med Chem. 2020 Jan 7;11(1):132-141. doi: 10.1039/c9md00463g. eCollection 2020 Jan 1.

Abstract

Activity cliffs (ACs) are pairs of structurally similar or analogous active compounds with large differences in potency against the same target. For identifying and analyzing ACs, similarity and potency difference criteria must be determined and consistently applied. This can be done in various ways, leading to different types of ACs. In this work, we introduce a new category of ACs by combining different similarity criteria, including the formation of matched molecular pairs and structural isomer relationships. A systematic computational search identified such ACs in compounds with activity against a variety of targets. In addition to other ACs exclusively formed by structural isomers, the newly introduced category of ACs is rich in structure-activity relationship (SAR) information, straightforward to interpret from a chemical perspective, and further extends the current spectrum of ACs.

摘要

活性悬崖(ACs)是指对同一靶点具有显著活性差异的一对结构相似或类似的活性化合物。为了识别和分析ACs,必须确定并始终如一地应用相似性和活性差异标准。这可以通过多种方式完成,从而产生不同类型的ACs。在这项工作中,我们通过结合不同的相似性标准,包括匹配分子对的形成和结构异构体关系,引入了一类新的ACs。系统的计算搜索在对多种靶点具有活性的化合物中识别出了此类ACs。除了仅由结构异构体形成的其他ACs外,新引入的ACs类别富含构效关系(SAR)信息,从化学角度易于解释,并且进一步扩展了当前ACs的范围。

相似文献

1
Introducing a new category of activity cliffs combining different compound similarity criteria.
RSC Med Chem. 2020 Jan 7;11(1):132-141. doi: 10.1039/c9md00463g. eCollection 2020 Jan 1.
2
Computational method for the identification of third generation activity cliffs.
MethodsX. 2020 Jan 14;7:100793. doi: 10.1016/j.mex.2020.100793. eCollection 2020.
4
Second-generation activity cliffs identified on the basis of target set-dependent potency difference criteria.
Future Med Chem. 2019 Mar;11(5):379-394. doi: 10.4155/fmc-2018-0299. Epub 2019 Mar 19.
6
MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs.
J Chem Inf Model. 2012 May 25;52(5):1138-45. doi: 10.1021/ci3001138. Epub 2012 Apr 17.
7
Evolving Concept of Activity Cliffs.
ACS Omega. 2019 Aug 26;4(11):14360-14368. doi: 10.1021/acsomega.9b02221. eCollection 2019 Sep 10.
9
Simplified activity cliff network representations with high interpretability and immediate access to SAR information.
J Comput Aided Mol Des. 2020 Sep;34(9):943-952. doi: 10.1007/s10822-020-00319-9. Epub 2020 Jun 5.
10
Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs.
J Chem Inf Model. 2012 Mar 26;52(3):670-7. doi: 10.1021/ci300033e. Epub 2012 Mar 14.

引用本文的文献

1
Exposing the Limitations of Molecular Machine Learning with Activity Cliffs.
J Chem Inf Model. 2022 Dec 12;62(23):5938-5951. doi: 10.1021/acs.jcim.2c01073. Epub 2022 Dec 1.
2
Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning Models in Drug Design.
ACS Omega. 2022 Jul 19;7(30):26573-26581. doi: 10.1021/acsomega.2c02738. eCollection 2022 Aug 2.
3
Nonadditivity in public and inhouse data: implications for drug design.
J Cheminform. 2021 Jul 2;13(1):47. doi: 10.1186/s13321-021-00525-z.
4
Increasing the public activity cliff knowledge base with new categories of activity cliffs.
Future Sci OA. 2020 Apr 15;6(5):FSO472. doi: 10.2144/fsoa-2020-0020.
5
Advances in exploring activity cliffs.
J Comput Aided Mol Des. 2020 Sep;34(9):929-942. doi: 10.1007/s10822-020-00315-z. Epub 2020 May 5.

本文引用的文献

2
Second-generation activity cliffs identified on the basis of target set-dependent potency difference criteria.
Future Med Chem. 2019 Mar;11(5):379-394. doi: 10.4155/fmc-2018-0299. Epub 2019 Mar 19.
3
Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.
ChemMedChem. 2018 Jul 6;13(13):1315-1324. doi: 10.1002/cmdc.201700798. Epub 2018 Jun 11.
4
The ChEMBL database in 2017.
Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954. doi: 10.1093/nar/gkw1074. Epub 2016 Nov 28.
6
7
Structure-based predictions of activity cliffs.
J Chem Inf Model. 2015 May 26;55(5):1062-76. doi: 10.1021/ci500742b. Epub 2015 May 11.
8
Advancing the activity cliff concept.
F1000Res. 2013 Sep 30;2:199. doi: 10.12688/f1000research.2-199.v1. eCollection 2013.
9
Molecular similarity in medicinal chemistry.
J Med Chem. 2014 Apr 24;57(8):3186-204. doi: 10.1021/jm401411z. Epub 2013 Nov 11.
10
Recent progress in understanding activity cliffs and their utility in medicinal chemistry.
J Med Chem. 2014 Jan 9;57(1):18-28. doi: 10.1021/jm401120g. Epub 2013 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验