Brooks M, Lemeshko M, Lundholm D, Yakaboylu E
IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
Department of Mathematics, Uppsala University, Box 480, SE-751 06 Uppsala, Sweden.
Phys Rev Lett. 2021 Jan 8;126(1):015301. doi: 10.1103/PhysRevLett.126.015301.
Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.
到目前为止,关于从准粒子角度对二维任意子进行实验实现的研究仅限于平面上的任意子。然而,众所周知,空间的几何结构和拓扑结构会对在其上运动的粒子的量子统计产生重大影响。在此,我们朝着实现局限于在球体而非平面上运动的粒子所呈现的分数统计迈出了第一步。我们表明,这样的模型在量子杂质问题的背景下自然出现。特别地,我们展示了一种设置,其中浸没在量子多粒子环境中的两个线性玻色子或费米子分子的最低能谱可以与球体上的任意子能谱重合。这为利用分子杂质在球体上实验实现任意子铺平了道路。此外,由于分子排列的变化对应于球体上粒子的交换,这样的实现揭示了一种新型的分子杂质排斥原理,这也可用作测量统计参数的强大技术。最后,我们的方法开辟了一条简单的数值途径来研究球体上多个任意子的能谱。相应地,我们给出了存在狄拉克单极场时球体上两个任意子的能谱。