Suppr超能文献

利用“芯片上的膜”微流控系统对蛋白-磷脂/膜相互作用进行表征。

Characterization of Protein-Phospholipid/Membrane Interactions Using a "Membrane-on-a-Chip" Microfluidic System.

机构信息

Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.

Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France.

出版信息

Methods Mol Biol. 2021;2251:143-156. doi: 10.1007/978-1-0716-1142-5_10.

Abstract

It is now clear that organelles of a mammalian cell can be distinguished by phospholipid profiles, both as ratios of common phospholipids and by the absence or presence of certain phospholipids. Organelle-specific phospholipids can be used to provide a specific shape and fluidity to the membrane and/or used to recruit and/or traffic proteins to the appropriate subcellular location and to restrict protein function to this location. Studying the interactions of proteins with specific phospholipids using soluble derivatives in isolation does not always provide useful information because the context in which the headgroups are presented almost always matters. Our laboratory has shown this circumstance to be the case for a viral protein binding to phosphoinositides in solution and in membranes. The system we have developed to study protein-phospholipid interactions in the context of a membrane benefits from the creation of tailored membranes in a channel of a microfluidic device, with a fluorescent lipid in the membrane serving as an indirect reporter of protein binding. This system is amenable to the study of myriad interactions occurring at a membrane surface as long as a net change in surface charge occurs in response to the binding event of interest.

摘要

现在很清楚,哺乳动物细胞的细胞器可以通过磷脂谱来区分,既可以通过常见磷脂的比例来区分,也可以通过特定磷脂的缺失或存在来区分。细胞器特异性磷脂可以用于为膜提供特定的形状和流动性,和/或用于招募和/或将蛋白质运输到适当的亚细胞位置,并将蛋白质功能限制在该位置。使用可溶性衍生物在分离状态下研究蛋白质与特定磷脂的相互作用并不总是提供有用的信息,因为头部基团呈现的环境几乎总是很重要。我们的实验室已经证明,这种情况适用于病毒蛋白在溶液和膜中与磷酸肌醇结合。我们开发的用于在膜环境中研究蛋白质-磷脂相互作用的系统得益于在微流控设备的通道中创建定制的膜,膜中的荧光脂质作为蛋白质结合的间接报告器。只要与感兴趣的结合事件相应地发生净表面电荷变化,该系统就适用于研究发生在膜表面的无数相互作用。

相似文献

2
PIP-on-a-chip: A Label-free Study of Protein-phosphoinositide Interactions.
J Vis Exp. 2017 Jul 27(125):55869. doi: 10.3791/55869.
4
Controlled delivery of proteins into bilayer lipid membranes on chip.
Lab Chip. 2007 Sep;7(9):1176-83. doi: 10.1039/b703818f. Epub 2007 Jun 27.
6
Droplet-interface-bilayer assays in microfluidic passive networks.
Sci Rep. 2015 Apr 24;5:9951. doi: 10.1038/srep09951.
7
Importance of phospholipid bilayer integrity in the analysis of protein-lipid interactions.
Biochem Biophys Res Commun. 2014 Oct 10;453(1):143-7. doi: 10.1016/j.bbrc.2014.09.079. Epub 2014 Sep 27.
8
Molecular mechanism of membrane binding of the GRP1 PH domain.
J Mol Biol. 2013 Sep 9;425(17):3073-90. doi: 10.1016/j.jmb.2013.05.026. Epub 2013 Jun 6.
10
Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer.
ACS Nano. 2018 Dec 26;12(12):12042-12049. doi: 10.1021/acsnano.8b04657. Epub 2018 Nov 27.

引用本文的文献

2
Micropatterning of functional lipid bilayer assays for quantitative bioanalysis.
Biomicrofluidics. 2023 May 9;17(3):031302. doi: 10.1063/5.0145997. eCollection 2023 May.

本文引用的文献

1
Multistep Interactions between Ibuprofen and Lipid Membranes.
Langmuir. 2018 Sep 11;34(36):10782-10792. doi: 10.1021/acs.langmuir.8b01878. Epub 2018 Aug 27.
2
Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein.
PLoS Pathog. 2018 May 21;14(5):e1007086. doi: 10.1371/journal.ppat.1007086. eCollection 2018 May.
3
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Structure. 2017 Dec 5;25(12):1875-1886.e7. doi: 10.1016/j.str.2017.11.001.
4
PIP-on-a-chip: A Label-free Study of Protein-phosphoinositide Interactions.
J Vis Exp. 2017 Jul 27(125):55869. doi: 10.3791/55869.
5
3D printed microfluidic devices: enablers and barriers.
Lab Chip. 2016 May 24;16(11):1993-2013. doi: 10.1039/c6lc00284f.
6
Cu(2+) Binds to Phosphatidylethanolamine and Increases Oxidation in Lipid Membranes.
J Am Chem Soc. 2016 Feb 10;138(5):1584-90. doi: 10.1021/jacs.5b11561. Epub 2016 Jan 28.
7
Single Molecule Fluorescence Microscopy on Planar Supported Bilayers.
J Vis Exp. 2015 Oct 31(105):e53158. doi: 10.3791/53158.
8
Etching of glass microchips with supercritical water.
Lab Chip. 2015 Jan 7;15(1):311-8. doi: 10.1039/c4lc00843j.
9
Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers.
Biointerphases. 2013 Dec;8(1):1. doi: 10.1186/1559-4106-8-1. Epub 2013 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验