Suppr超能文献

基于 CT 图像构建的数字重建射线影像和真实标注的深度卷积神经网络在胸部 X 光片上对 COVID-19 肺部疾病的自动检测和量化:一种达到专家放射科医生水平的新方法。

Automated Detection and Quantification of COVID-19 Airspace Disease on Chest Radiographs: A Novel Approach Achieving Expert Radiologist-Level Performance Using a Deep Convolutional Neural Network Trained on Digital Reconstructed Radiographs From Computed Tomography-Derived Ground Truth.

机构信息

From the Perelman School of Medicine, University of Pennsylvania, Philadelphia.

Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ.

出版信息

Invest Radiol. 2021 Aug 1;56(8):471-479. doi: 10.1097/RLI.0000000000000763.

Abstract

OBJECTIVES

The aim of this study was to leverage volumetric quantification of airspace disease (AD) derived from a superior modality (computed tomography [CT]) serving as ground truth, projected onto digitally reconstructed radiographs (DRRs) to (1) train a convolutional neural network (CNN) to quantify AD on paired chest radiographs (CXRs) and CTs, and (2) compare the DRR-trained CNN to expert human readers in the CXR evaluation of patients with confirmed COVID-19.

MATERIALS AND METHODS

We retrospectively selected a cohort of 86 COVID-19 patients (with positive reverse transcriptase-polymerase chain reaction test results) from March to May 2020 at a tertiary hospital in the northeastern United States, who underwent chest CT and CXR within 48 hours. The ground-truth volumetric percentage of COVID-19-related AD (POv) was established by manual AD segmentation on CT. The resulting 3-dimensional masks were projected into 2-dimensional anterior-posterior DRR to compute area-based AD percentage (POa). A CNN was trained with DRR images generated from a larger-scale CT dataset of COVID-19 and non-COVID-19 patients, automatically segmenting lungs, AD, and quantifying POa on CXR. The CNN POa results were compared with POa quantified on CXR by 2 expert readers and to the POv ground truth, by computing correlations and mean absolute errors.

RESULTS

Bootstrap mean absolute error and correlations between POa and POv were 11.98% (11.05%-12.47%) and 0.77 (0.70-0.82) for average of expert readers and 9.56% to 9.78% (8.83%-10.22%) and 0.78 to 0.81 (0.73-0.85) for the CNN, respectively.

CONCLUSIONS

Our CNN trained with DRR using CT-derived airspace quantification achieved expert radiologist level of accuracy in the quantification of AD on CXR in patients with positive reverse transcriptase-polymerase chain reaction test results for COVID-19.

摘要

目的

本研究旨在利用一种优越的模态(计算机断层扫描[CT])对气腔疾病(AD)进行容积量化,并将其投射到数字重建放射影像(DRR)上,以(1)训练卷积神经网络(CNN)对胸部 X 线摄影(CXR)和 CT 上的 AD 进行量化,以及(2)在对经逆转录酶-聚合酶链反应(RT-PCR)检测呈阳性的 COVID-19 患者的 CXR 评估中,将 DRR 训练的 CNN 与专家人类读者进行比较。

材料和方法

我们从美国东北部的一家三级医院回顾性地选择了 2020 年 3 月至 5 月期间的 86 例 COVID-19 患者(具有阳性 RT-PCR 检测结果)的队列,这些患者在 48 小时内接受了胸部 CT 和 CXR 检查。COVID-19 相关 AD(POv)的容积百分比的真实值是通过 CT 上的手动 AD 分割建立的。将得到的 3 维掩模投影到 2 维前后位 DRR 中,以计算基于面积的 AD 百分比(POa)。使用来自 COVID-19 和非 COVID-19 患者的更大规模 CT 数据集生成的 DRR 图像对 CNN 进行训练,自动对 CXR 上的肺部、AD 进行分割,并量化 POa。通过计算相关性和平均绝对误差,将 CNN 的 POa 结果与由 2 位专家读者在 CXR 上量化的 POa 结果以及与 POv 地面真实值进行比较。

结果

平均而言,POa 与 POv 之间的 bootstrap 平均绝对误差和相关性分别为 11.98%(11.05%-12.47%)和 0.77(0.70-0.82),为两位专家读者的结果;对于 CNN,相应的为 9.56%至 9.78%(8.83%-10.22%)和 0.78 至 0.81(0.73-0.85)。

结论

我们使用 CT 衍生的气腔量化方法在 DRR 上训练的 CNN 在对 RT-PCR 检测呈阳性的 COVID-19 患者的 CXR 上 AD 量化方面达到了专家放射科医生的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验