Suppr超能文献

自动化估计胸部 X 射线胸片中的胸廓旋转:一种用于增强技术评估的深度学习方法。

Automated estimation of thoracic rotation in chest X-ray radiographs: a deep learning approach for enhanced technical assessment.

机构信息

School of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Br J Radiol. 2024 Oct 1;97(1162):1690-1695. doi: 10.1093/bjr/tqae149.

Abstract

OBJECTIVES

This study aims to develop an automated approach for estimating the vertical rotation of the thorax, which can be used to assess the technical adequacy of chest X-ray radiographs (CXRs).

METHODS

Total 800 chest radiographs were used to train and establish segmentation networks for outlining the lungs and spine regions in chest X-ray images. By measuring the widths of the left and right lungs between the central line of segmented spine and the lateral sides of the segmented lungs, the quantification of thoracic vertical rotation was achieved. Additionally, a life-size, full body anthropomorphic phantom was employed to collect chest radiographic images under various specified rotation angles for assessing the accuracy of the proposed approach.

RESULTS

The deep learning networks effectively segmented the anatomical structures of the lungs and spine. The proposed approach demonstrated a mean estimation error of less than 2° for thoracic rotation, surpassing existing techniques and indicating its superiority.

CONCLUSIONS

The proposed approach offers a robust assessment of thoracic rotation and presents new possibilities for automated image quality control in chest X-ray examinations.

ADVANCES IN KNOWLEDGE

This study presents a novel deep-learning-based approach for the automated estimation of vertical thoracic rotation in chest X-ray radiographs. The proposed method enables a quantitative assessment of the technical adequacy of CXR examinations and opens up new possibilities for automated screening and quality control of radiographs.

摘要

目的

本研究旨在开发一种自动估计胸廓垂直旋转的方法,用于评估胸部 X 射线(CXR)的技术充分性。

方法

共使用 800 张胸部 X 射线进行训练和建立分割网络,以勾勒出胸部 X 射线图像中的肺部和脊柱区域。通过测量分割脊柱中线与分割肺部侧面之间左右肺部的宽度,实现了对胸廓垂直旋转的量化。此外,还使用真人大小的全身仿体来收集在各种指定旋转角度下的胸部放射图像,以评估所提出方法的准确性。

结果

深度学习网络有效地分割了肺部和脊柱的解剖结构。所提出的方法对胸廓旋转的平均估计误差小于 2°,优于现有技术,表明其优越性。

结论

所提出的方法为胸廓旋转提供了稳健的评估,并为胸部 X 射线检查中的自动图像质量控制提供了新的可能性。

知识进展

本研究提出了一种基于深度学习的新方法,用于自动估计胸部 X 射线中的垂直胸廓旋转。该方法能够对 CXR 检查的技术充分性进行定量评估,并为放射图像的自动筛查和质量控制开辟了新的可能性。

相似文献

7
Thoracic imaging tests for the diagnosis of COVID-19.用于 COVID-19 诊断的胸部影像学检查。
Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5.

本文引用的文献

3
Estimating rotation angle from asymmetric projection of chest.
J Xray Sci Technol. 2021;29(6):1139-1147. doi: 10.3233/XST-210990.
4
Automating chest radiograph imaging quality control.自动化胸部 X 光成像质量控制。
Phys Med. 2021 Mar;83:138-145. doi: 10.1016/j.ejmp.2021.03.014. Epub 2021 Mar 23.
6
A deep learning approach to detect Covid-19 coronavirus with X-Ray images.一种利用X光图像检测新冠病毒的深度学习方法。
Biocybern Biomed Eng. 2020 Oct-Dec;40(4):1391-1405. doi: 10.1016/j.bbe.2020.08.008. Epub 2020 Sep 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验