School of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Br J Radiol. 2024 Oct 1;97(1162):1690-1695. doi: 10.1093/bjr/tqae149.
This study aims to develop an automated approach for estimating the vertical rotation of the thorax, which can be used to assess the technical adequacy of chest X-ray radiographs (CXRs).
Total 800 chest radiographs were used to train and establish segmentation networks for outlining the lungs and spine regions in chest X-ray images. By measuring the widths of the left and right lungs between the central line of segmented spine and the lateral sides of the segmented lungs, the quantification of thoracic vertical rotation was achieved. Additionally, a life-size, full body anthropomorphic phantom was employed to collect chest radiographic images under various specified rotation angles for assessing the accuracy of the proposed approach.
The deep learning networks effectively segmented the anatomical structures of the lungs and spine. The proposed approach demonstrated a mean estimation error of less than 2° for thoracic rotation, surpassing existing techniques and indicating its superiority.
The proposed approach offers a robust assessment of thoracic rotation and presents new possibilities for automated image quality control in chest X-ray examinations.
This study presents a novel deep-learning-based approach for the automated estimation of vertical thoracic rotation in chest X-ray radiographs. The proposed method enables a quantitative assessment of the technical adequacy of CXR examinations and opens up new possibilities for automated screening and quality control of radiographs.
本研究旨在开发一种自动估计胸廓垂直旋转的方法,用于评估胸部 X 射线(CXR)的技术充分性。
共使用 800 张胸部 X 射线进行训练和建立分割网络,以勾勒出胸部 X 射线图像中的肺部和脊柱区域。通过测量分割脊柱中线与分割肺部侧面之间左右肺部的宽度,实现了对胸廓垂直旋转的量化。此外,还使用真人大小的全身仿体来收集在各种指定旋转角度下的胸部放射图像,以评估所提出方法的准确性。
深度学习网络有效地分割了肺部和脊柱的解剖结构。所提出的方法对胸廓旋转的平均估计误差小于 2°,优于现有技术,表明其优越性。
所提出的方法为胸廓旋转提供了稳健的评估,并为胸部 X 射线检查中的自动图像质量控制提供了新的可能性。
本研究提出了一种基于深度学习的新方法,用于自动估计胸部 X 射线中的垂直胸廓旋转。该方法能够对 CXR 检查的技术充分性进行定量评估,并为放射图像的自动筛查和质量控制开辟了新的可能性。