Medical Artificial Intelligence Laboratory Program (MAIL), Department of Diagnostic Radiology, LKS Faculty of Medicine.
Ensemble-group.com, Scottsdale, AZ.
J Thorac Imaging. 2020 Nov 1;35(6):369-376. doi: 10.1097/RTI.0000000000000559.
To evaluate the performance of a deep learning (DL) algorithm for the detection of COVID-19 on chest radiographs (CXR).
In this retrospective study, a DL model was trained on 112,120 CXR images with 14 labeled classifiers (ChestX-ray14) and fine-tuned using initial CXR on hospital admission of 509 patients, who had undergone COVID-19 reverse transcriptase-polymerase chain reaction (RT-PCR). The test set consisted of a CXR on presentation of 248 individuals suspected of COVID-19 pneumonia between February 16 and March 3, 2020 from 4 centers (72 RT-PCR positives and 176 RT-PCR negatives). The CXR were independently reviewed by 3 radiologists and using the DL algorithm. Diagnostic performance was compared with radiologists' performance and was assessed by area under the receiver operating characteristics (AUC).
The median age of the subjects in the test set was 61 (interquartile range: 39 to 79) years (51% male). The DL algorithm achieved an AUC of 0.81, sensitivity of 0.85, and specificity of 0.72 in detecting COVID-19 using RT-PCR as the reference standard. On subgroup analyses, the model achieved an AUC of 0.79, sensitivity of 0.80, and specificity of 0.74 in detecting COVID-19 in patients presented with fever or respiratory systems and an AUC of 0.87, sensitivity of 0.85, and specificity of 0.81 in distinguishing COVID-19 from other forms of pneumonia. The algorithm significantly outperforms human readers (P<0.001 using DeLong test) with higher sensitivity (P=0.01 using McNemar test).
A DL algorithm (COV19NET) for the detection of COVID-19 on chest radiographs can potentially be an effective tool in triaging patients, particularly in resource-stretched health-care systems.
评估深度学习(DL)算法在胸部 X 线摄影(CXR)上检测 COVID-19 的性能。
在这项回顾性研究中,使用 14 个标记分类器(ChestX-ray14)对 112120 张 CXR 图像进行了 DL 模型训练,并使用 509 名入院时进行 COVID-19 逆转录酶-聚合酶链反应(RT-PCR)的初始 CXR 进行了微调。测试集由 4 个中心在 2020 年 2 月 16 日至 3 月 3 日期间对 248 名疑似 COVID-19 肺炎患者的 CXR 组成(72 例 RT-PCR 阳性和 176 例 RT-PCR 阴性)。CXR 由 3 名放射科医生独立使用 DL 算法进行审查。比较了诊断性能与放射科医生的表现,并通过接受者操作特征曲线下的面积(AUC)进行评估。
测试集中患者的中位年龄为 61(四分位间距:39 至 79)岁(51%为男性)。使用 RT-PCR 作为参考标准,DL 算法在检测 COVID-19 时的 AUC 为 0.81,敏感性为 0.85,特异性为 0.72。在亚组分析中,该模型在检测出现发热或呼吸系统症状的患者的 COVID-19 时的 AUC 为 0.79,敏感性为 0.80,特异性为 0.74,在区分 COVID-19 与其他类型的肺炎时的 AUC 为 0.87,敏感性为 0.85,特异性为 0.81。该算法的性能明显优于人类读者(使用 DeLong 检验,P<0.001),具有更高的敏感性(使用 McNemar 检验,P=0.01)。
用于在胸部 X 射线摄影上检测 COVID-19 的 DL 算法(COV19NET)可能是一种有效的分诊工具,特别是在资源紧张的医疗保健系统中。