Suppr超能文献

深度迁移学习人工智能可在便携式胸部 X 光片上准确分期 COVID-19 肺部疾病的严重程度。

Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs.

机构信息

Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America.

出版信息

PLoS One. 2020 Jul 28;15(7):e0236621. doi: 10.1371/journal.pone.0236621. eCollection 2020.

Abstract

This study employed deep-learning convolutional neural networks to stage lung disease severity of Coronavirus Disease 2019 (COVID-19) infection on portable chest x-ray (CXR) with radiologist score of disease severity as ground truth. This study consisted of 131 portable CXR from 84 COVID-19 patients (51M 55.1±14.9yo; 29F 60.1±14.3yo; 4 missing information). Three expert chest radiologists scored the left and right lung separately based on the degree of opacity (0-3) and geographic extent (0-4). Deep-learning convolutional neural network (CNN) was used to predict lung disease severity scores. Data were split into 80% training and 20% testing datasets. Correlation analysis between AI-predicted versus radiologist scores were analyzed. Comparison was made with traditional and transfer learning. The average opacity score was 2.52 (range: 0-6) with a standard deviation of 0.25 (9.9%) across three readers. The average geographic extent score was 3.42 (range: 0-8) with a standard deviation of 0.57 (16.7%) across three readers. The inter-rater agreement yielded a Fleiss' Kappa of 0.45 for opacity score and 0.71 for extent score. AI-predicted scores strongly correlated with radiologist scores, with the top model yielding a correlation coefficient (R2) of 0.90 (range: 0.73-0.90 for traditional learning and 0.83-0.90 for transfer learning) and a mean absolute error of 8.5% (ranges: 17.2-21.0% and 8.5%-15.5, respectively). Transfer learning generally performed better. In conclusion, deep-learning CNN accurately stages disease severity on portable chest x-ray of COVID-19 lung infection. This approach may prove useful to stage lung disease severity, prognosticate, and predict treatment response and survival, thereby informing risk management and resource allocation.

摘要

本研究利用深度学习卷积神经网络,根据便携式胸部 X 光片(CXR)上的放射科医生严重程度评分(疾病严重程度的真实情况),对 2019 年冠状病毒病(COVID-19)感染的肺病严重程度进行分期。本研究纳入了 84 例 COVID-19 患者的 131 份便携式 CXR(51M,55.1±14.9 岁;29F,60.1±14.3 岁;4 份信息缺失)。三位胸部放射学专家根据不透明度(0-3)和地理范围(0-4)对左、右肺进行了单独评分。深度学习卷积神经网络(CNN)用于预测肺部疾病严重程度评分。数据分为 80%的训练数据集和 20%的测试数据集。分析了 AI 预测值与放射科医生评分之间的相关性。并与传统学习和转移学习进行了比较。三位放射科医生的平均不透明度评分为 2.52(范围:0-6),标准差为 0.25(9.9%)。三位放射科医生的平均地理范围评分为 3.42(范围:0-8),标准差为 0.57(16.7%)。三位放射科医生的组内一致性为不透明度评分的 Fleiss'kappa 为 0.45,范围评分为 0.71。AI 预测评分与放射科医生评分密切相关,最佳模型的相关系数(R2)为 0.90(传统学习的范围为 0.73-0.90,转移学习的范围为 0.83-0.90),平均绝对误差为 8.5%(范围为 17.2%-21.0%和 8.5%-15.5%)。转移学习通常表现更好。总之,深度学习 CNN 可以准确地对 COVID-19 肺部感染的便携式胸部 X 光片进行疾病严重程度分期。这种方法可能有助于分期肺部疾病严重程度、预测预后以及治疗反应和生存情况,从而为风险管理和资源分配提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2479/7386587/87c09b1b64f2/pone.0236621.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验