CHU de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec Hospital, Québec City, Québec, Canada.
Division of Nephrology, Department of medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1361-H1369. doi: 10.1152/ajpheart.00551.2020. Epub 2021 Jan 22.
Pulse wave velocity (PWV) is used to evaluate regional stiffness of large and medium-sized arteries. Here, we examine the feasibility and reliability of radial-digital PWV (RD-PWV) as a measure of regional stiffness of small conduit arteries and its response to changes in hydrostatic pressure. In 29 healthy subjects, we used Complior Analyse piezoelectric probes to record arterial pulse wave at the radial artery and the tip of the index. We determined transit time by second-derivative and intersecting tangents using the device-embedded algorithms and in-house MATLAB-based analyses of only reliable waves and by numerical simulation using a one-dimensional (1-D) arterial tree model coupled with a heart model. Second-derivative RD-PWV was 4.68 ± 1.18, 4.69 ± 1.21, and 4.32 ± 1.19 m/s for device-embedded, MATLAB-based, and numerical simulation analyses, respectively. Intersecting-tangent RD-PWV was 4.73 ± 1.20, 4.45 ± 1.08, and 4.50 ± 0.84 m/s for device-embedded, MATLAB-based, and numerical simulation analyses, respectively. Intersession coefficients of variation were 7.0% ± 4.9% and 3.2% ± 1.9% ( = 0.04) for device-embedded and MATLAB-based second-derivative algorithms, respectively. In 15 subjects, we examined the response of RD-PWV to changes in local hydrostatic pressure by vertical displacement of the hand. For an increase of 10 mmHg in local hydrostatic pressure, RD-PWV increased by 0.28 m/s (95% confidence interval: 0.16-0.40; < 0.001). This study shows that RD-PWV can be used for the noninvasive assessment of regional stiffness of small conduit arteries. This finding allows for an integrated approach for assessing arterial stiffness gradient from the aorta to medium-sized arteries and now to small conduit arteries. The interaction between the stiffness of various arterial segments is important in understanding the behavior of pressure and flow waves along the arterial tree. In this article, we provide a novel and noninvasive method of assessing the regional stiffness of small conduit arteries using the same piezoelectric sensors used for determination of pulse wave velocity over large- and medium-sized arteries. This development allows for an integrated approach for studying arterial stiffness gradient.
脉搏波速度(PWV)用于评估大中动脉的局部僵硬度。在这里,我们研究了桡动脉-指端脉搏波传导速度(RD-PWV)作为小血管腔道动脉局部僵硬度的测量指标的可行性和可靠性,以及其对静水压力变化的反应。在 29 名健康受试者中,我们使用 Complior Analyse 压电探头在桡动脉和指尖记录动脉脉搏波。我们使用设备内置算法通过二阶导数和切线相交确定传输时间,并使用仅可靠波的内置 MATLAB 分析以及使用一维(1-D)动脉树模型与心脏模型耦合的数值模拟进行分析。设备内置、基于 MATLAB 和数值模拟分析的二阶导数 RD-PWV 分别为 4.68 ± 1.18、4.69 ± 1.21 和 4.32 ± 1.19 m/s。切线相交 RD-PWV 分别为 4.73 ± 1.20、4.45 ± 1.08 和 4.50 ± 0.84 m/s。设备内置和基于 MATLAB 的二阶导数算法的两次测量间变异系数分别为 7.0% ± 4.9%( = 0.04)和 3.2% ± 1.9%。在 15 名受试者中,我们通过手部垂直位移检查 RD-PWV 对局部静水压力变化的反应。局部静水压力增加 10mmHg 时,RD-PWV 增加 0.28m/s(95%置信区间:0.16-0.40;<0.001)。这项研究表明,RD-PWV 可用于无创评估小血管腔道动脉的局部僵硬度。这一发现允许采用一种综合方法评估从主动脉到中等大小动脉再到小血管腔道的动脉僵硬度梯度。不同动脉节段之间的相互作用对于理解沿动脉树的压力和流量波的行为很重要。在本文中,我们提供了一种新的无创方法,使用用于确定大、中动脉脉搏波速度的相同压电传感器来评估小血管腔道的局部僵硬度。这一发展允许采用一种综合方法研究动脉僵硬度梯度。