Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany.
Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
PLoS Genet. 2021 Jan 22;17(1):e1009092. doi: 10.1371/journal.pgen.1009092. eCollection 2021 Jan.
In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.
为了适应不断变化的环境条件,细菌利用核苷酸第二信使将外部信号转导并转化为特定的细胞反应。环二腺苷酸(c-di-AMP)是唯一已知的必需核苷酸第二信使。除了该第二信使在控制钾离子稳态方面的作用得到广泛证实外,我们还观察到谷氨酸对无 c-di-AMP 的革兰氏阳性模式细菌枯草芽孢杆菌的毒性与钾离子相当。在这项工作中,我们分离出了允许无 c-di-AMP 菌株在这些毒性条件下生长的抑制突变体。对谷氨酸抗性抑制突变体的特征分析表明,它们包含一对突变,在大多数情况下影响谷氨酸和钾离子稳态。在这些突变中,有几个独立的突变影响了一种新型的谷氨酸转运蛋白 AimA(氨基酸输入 A,以前称为 YbeC)。该蛋白是枯草芽孢杆菌中谷氨酸和丝氨酸的主要转运蛋白。出乎意料的是,一些分离出的抑制突变体可以通过影响磷脂生物合成的突变和小电导机械敏感通道的特定功能获得突变(YfkC)的组合来抑制谷氨酸毒性,从而获得谷氨酸外排的装置。在复杂培养基中培养无 c-di-AMP 菌株是一个更大的挑战,因为钾离子、谷氨酸和其他渗透物的量比在基础培养基中高得多。如果不存在两个 c-di-AMP 受体蛋白 DarA 或 DarB 之一,只能在无氧条件下分离出在复杂培养基中存活的抑制突变体。在复杂培养基上,钾离子和渗透物毒性是无 c-di-AMP 时枯草芽孢杆菌生长的主要瓶颈。我们的结果表明,c-di-AMP 在枯草芽孢杆菌中的必需性是由第二信使核苷酸对细胞生理学不同方面的全局影响引起的。