Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France.
Institut des Humanités Numériques, CY Cergy Paris Université, Cergy, France.
PLoS One. 2021 Jan 22;16(1):e0245718. doi: 10.1371/journal.pone.0245718. eCollection 2021.
Massive Open Online Course (MOOC) platforms incorporate large course catalogs from which individual students may register multiple courses. We performed a network-based analysis of student achievement, considering how course-course interactions may positively or negatively affect student success. Our data set included 378,000 users and 1,000,000 unique registration events in France Université Numérique (FUN), a national MOOC platform. We adapt reliability theory to model certificate completion rates with a Weibull survival function, following the intuition that students "survive" in a course for a certain time before stochastically dropping out. Course-course interactions are found to be well described by a single parameter for user engagement that can be estimated from a user's registration profile. User engagement, in turn, correlates with certificate rates in all courses regardless of specific content. The reliability approach is shown to capture several certificate rate patterns that are overlooked by conventional regression models. User engagement emerges as a natural metric for tracking student progress across demographics and over time.
大规模开放在线课程 (MOOC) 平台整合了大型课程目录,学生可以从中注册多门课程。我们进行了基于网络的学生成绩分析,考虑了课程之间的相互作用如何对学生的成功产生积极或消极的影响。我们的数据集中包括法国数字大学 (FUN) 的 378000 名用户和 100 万次独特的注册事件,这是一个全国性的 MOOC 平台。我们采用可靠性理论,使用威布尔生存函数来模拟证书完成率,其直觉是学生在课程中“生存”一段时间后,会随机退出。课程之间的相互作用可以通过一个用户参与度的单一参数来很好地描述,该参数可以从用户的注册资料中估计出来。用户参与度反过来与所有课程的证书率相关,而与特定内容无关。可靠性方法被证明可以捕捉到传统回归模型忽略的几个证书率模式。用户参与度作为一种跟踪学生在人口统计学和时间跨度上的进步的自然指标出现。