Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, Kentucky 40536, United States.
Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, United States.
Anal Chem. 2021 Feb 9;93(5):2749-2757. doi: 10.1021/acs.analchem.0c03070. Epub 2021 Jan 22.
The metabolome comprises a complex network of interconnecting enzyme-catalyzed reactions that involve transfers of numerous molecular subunits. Thus, the reconstruction of metabolic networks requires metabolite substructures to be tracked. Subunit tracking can be achieved by tracing stable isotopes through metabolic transformations using NMR and ultrahigh -resolution (UHR)-mass spectrometry (MS). UHR-MS readily resolves and counts isotopic labels in metabolites but requires tandem MS to help identify isotopic enrichment in substructures. However, it is challenging to perform chromatography-based UHR-MS with its long acquisition time, while acquiring MS data on many coeluting labeled isotopologues for each metabolite. We have developed an ion chromatography (IC)-UHR-MS/data-independent(DI)-HR-MS method to trace the fate of C atoms from [C]-glucose ([C]-Glc) in 3D A549 spheroids in response to anticancer selenite and simultaneously C/N atoms from [C,N]-glutamine ([C,N]-Gln) in 2D BEAS-2B cells in response to arsenite transformation. This method retains the complete isotopologue distributions of metabolites via UHR-MS while simultaneously acquiring substructure label information via DI-MS. These details in metabolite labeling patterns greatly facilitate rigorous reconstruction of multiple, intersecting metabolic pathways of central metabolism, which are illustrated here for the purine/pyrimidine nucleotide biosynthesis. The pathways reconstructed based on subunit-level isotopologue analysis further reveal specific enzyme-catalyzed reactions that are impacted by selenite or arsenite treatments.
代谢组学由相互连接的酶促反应组成,这些反应涉及许多分子亚基的转移。因此,代谢网络的重建需要跟踪代谢物的亚结构。可以通过使用 NMR 和超高分辨率(UHR)-质谱(MS)跟踪稳定同位素在代谢转化中的转移来实现亚基跟踪。UHR-MS 可以轻松解析和计数代谢物中的同位素标记,但需要串联 MS 来帮助确定亚结构中的同位素富集。然而,由于其采集时间长,在基于色谱的 UHR-MS 上进行操作具有挑战性,同时需要采集每个代谢物中许多共洗脱标记同位素的 MS 数据。我们开发了一种离子色谱(IC)-UHR-MS/数据独立(DI)-HR-MS 方法,用于追踪 [C]-葡萄糖([C]-Glc)中的 C 原子在 3D A549 球体中的命运,以响应抗癌亚硒酸盐,同时追踪 [C,N]-谷氨酰胺([C,N]-Gln)中的 C/N 原子在 2D BEAS-2B 细胞中的命运,以响应亚砷酸盐转化。该方法通过 UHR-MS 保留代谢物的完整同位素分布,同时通过 DI-MS 同时获取亚结构标记信息。这些代谢物标记模式的详细信息极大地促进了中心代谢中多个交叉代谢途径的严格重建,这里以嘌呤/嘧啶核苷酸生物合成为例进行了说明。基于亚基水平同位素分析重建的途径进一步揭示了受亚硒酸盐或亚砷酸盐处理影响的特定酶促反应。