International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya.
Parasit Vectors. 2021 Jan 22;14(1):74. doi: 10.1186/s13071-021-04597-6.
Trypanosoma brucei species are motile protozoan parasites that are cyclically transmitted by tsetse fly (genus Glossina) causing human sleeping sickness and nagana in livestock in sub-Saharan Africa. African trypanosomes display digenetic life cycle stages in the tsetse fly vector and in their mammalian host. Experimental work on insect-stage trypanosomes is challenging because of the difficulty in setting up successful in vitro cultures. Therefore, there is limited knowledge on the trypanosome biology during its development in the tsetse fly. Consequently, this limits the development of new strategies for blocking parasite transmission in the tsetse fly.
In this study, RNA-Seq data of insect-stage trypanosomes were used to construct a T. brucei gene co-expression network using the weighted gene co-expression analysis (WGCNA) method. The study identified significant enriched modules for genes that play key roles during the parasite's development in tsetse fly. Furthermore, potential 3' untranslated region (UTR) regulatory elements for genes that clustered in the same module were identified using the Finding Informative Regulatory Elements (FIRE) tool.
A fraction of gene modules (12 out of 27 modules) in the constructed network were found to be enriched in functional roles associated with the cell division, protein biosynthesis, mitochondrion, and cell surface. Additionally, 12 hub genes encoding proteins such as RNA-binding protein 6 (RBP6), arginine kinase 1 (AK1), brucei alanine-rich protein (BARP), among others, were identified for the 12 significantly enriched gene modules. In addition, the potential regulatory elements located in the 3' untranslated regions of genes within the same module were predicted.
The constructed gene co-expression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. This will enhance understanding of the molecular mechanisms that underlie important biological processes during parasite's development in tsetse fly. Ultimately, these findings will be key in the identification of potential molecular targets for disease control.
布氏锥虫是一种能运动的原生动物寄生虫,通过采采蝇(舌蝇属)周期性传播,导致撒哈拉以南非洲的人类昏睡病和家畜的那加那病。非洲锥虫在采采蝇媒介和其哺乳动物宿主中表现出双核生命周期阶段。由于难以建立成功的体外培养,昆虫阶段锥虫的实验工作具有挑战性。因此,对锥虫在采采蝇中发育过程的了解有限。这限制了在采采蝇中阻断寄生虫传播的新策略的发展。
在这项研究中,使用昆虫阶段锥虫的 RNA-Seq 数据,使用加权基因共表达网络分析(WGCNA)方法构建了布氏锥虫基因共表达网络。该研究确定了在寄生虫在采采蝇中发育过程中发挥关键作用的基因的显著富集模块。此外,使用发现信息调节元件(FIRE)工具鉴定了在同一模块中聚类的基因的潜在 3'非翻译区(UTR)调节元件。
构建网络中的一部分基因模块(27 个模块中的 12 个)被发现富集与细胞分裂、蛋白质生物合成、线粒体和细胞表面相关的功能角色。此外,还鉴定了 12 个显著富集基因模块中的 12 个编码 RNA 结合蛋白 6 (RBP6)、精氨酸激酶 1 (AK1)、布氏锥虫丙氨酸丰富蛋白 (BARP) 等蛋白质的基因的 12 个枢纽基因。此外,还预测了同一模块内基因的 3'UTR 中潜在的调节元件。
构建的基因共表达网络为基于网络的数据挖掘提供了有用的资源,以鉴定功能研究的候选基因。这将增强对寄生虫在采采蝇中发育过程中重要生物学过程的分子机制的理解。最终,这些发现将是确定疾病控制潜在分子靶标的关键。