文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采采蝇对布氏锥虫感染的耐受性:采采蝇唾液腺中锥虫相关变化的转录组分析

Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland.

作者信息

Matetovici Irina, Caljon Guy, Van Den Abbeele Jan

机构信息

Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.

Present address: Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.

出版信息

BMC Genomics. 2016 Nov 25;17(1):971. doi: 10.1186/s12864-016-3283-0.


DOI:10.1186/s12864-016-3283-0
PMID:27884110
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5123318/
Abstract

BACKGROUND: For their transmission, African trypanosomes rely on their blood feeding insect vector, the tsetse fly (Glossina sp.). The ingested Trypanosoma brucei parasites have to overcome a series of barriers in the tsetse fly alimentary tract to finally develop into the infective metacyclic forms in the salivary glands that are transmitted to a mammalian host by the tsetse bite. The parasite population in the salivary gland is dense with a significant number of trypanosomes tightly attached to the epithelial cells. Our current knowledge on the impact of the infection on the salivary gland functioning is very limited. Therefore, this study aimed to gain a deeper insight into the global gene expression changes in the salivary glands of Glossina morsitans morsitans in response to an infection with the T. brucei parasite. A detailed whole transcriptome comparison of midgut-infected tsetse with and without a mature salivary gland infection was performed to study the impact of a trypanosome infection on different aspects of the salivary gland functioning and the mechanisms that are induced in this tissue to tolerate the infection i.e. to control the negative impact of the parasite presence. Moreover, a transcriptome comparison with age-matched uninfected flies was done to see whether gene expression in the salivary glands is already affected by a trypanosome infection in the tsetse midgut. RESULTS: By a RNA-sequencing (RNA-seq) approach we compared the whole transcriptomes of flies with a T. brucei salivary gland/midgut infection versus flies with only a midgut infection or versus non-infected flies, all with the same age and feeding history. More than 7500 salivary gland transcripts were detected from which a core group of 1214 differentially expressed genes (768 up- and 446 down-regulated) were shared between the two transcriptional comparisons. Gene Ontology enrichment analysis and detailed gene expression comparisons showed a diverse impact at the gene transcript level. Increased expression was observed for transcripts encoding for proteins involved in immunity (like several genes of the Imd-signaling pathway, serine proteases, serpins and thioester-containing proteins), detoxification of reactive species, cell death, cytoskeleton organization, cell junction and repair. Decreased expression was observed for transcripts encoding the major secreted proteins such as 5'-nucleotidases, adenosine deaminases and the nucleic acid binding proteins Tsals. Moreover, expression of some gene categories in the salivary glands were found to be already affected by a trypanosome midgut infection, before the parasite reaches the salivary glands. CONCLUSIONS: This study reveals that the T. brucei population in the tsetse salivary gland has a negative impact on its functioning and on the integrity of the gland epithelium. Our RNA-seq data suggest induction of a strong local tissue response in order to control the epithelial cell damage, the ROS intoxication of the cellular environment and the parasite infection, resulting in the fly tolerance to the infection. The modified expression of some gene categories in the tsetse salivary glands by a trypanosome infection at the midgut level indicate a putative anticipatory response in the salivary glands, before the parasite reaches this tissue.

摘要

背景:非洲锥虫依靠吸血昆虫媒介采采蝇(舌蝇属)进行传播。摄入的布氏锥虫寄生虫必须克服采采蝇消化道中的一系列障碍,最终在唾液腺中发育成感染性的循环后期形态,通过采采蝇叮咬传播给哺乳动物宿主。唾液腺中的寄生虫群体密集,大量锥虫紧密附着在上皮细胞上。我们目前对感染对唾液腺功能影响的了解非常有限。因此,本研究旨在更深入地了解冈比亚采采蝇唾液腺在感染布氏锥虫寄生虫后的全局基因表达变化。对有和没有成熟唾液腺感染的中肠感染采采蝇进行了详细的全转录组比较,以研究锥虫感染对唾液腺功能不同方面的影响以及该组织中诱导产生的耐受感染的机制,即控制寄生虫存在的负面影响。此外,还与年龄匹配的未感染采采蝇进行了转录组比较,以查看采采蝇中肠的锥虫感染是否已经影响唾液腺中的基因表达。 结果:通过RNA测序(RNA-seq)方法,我们比较了感染布氏锥虫唾液腺/中肠的采采蝇、仅感染中肠的采采蝇和未感染采采蝇的全转录组,所有采采蝇年龄和取食历史相同。检测到超过7500个唾液腺转录本,在两个转录组比较中共有1214个差异表达基因的核心组(768个上调和446个下调)。基因本体富集分析和详细的基因表达比较显示在基因转录水平上有多种影响。观察到参与免疫的蛋白质(如Imd信号通路的几个基因、丝氨酸蛋白酶、丝氨酸蛋白酶抑制剂和含硫酯蛋白)、活性物质解毒、细胞死亡、细胞骨架组织、细胞连接和修复的转录本表达增加。观察到主要分泌蛋白如5'-核苷酸酶、腺苷脱氨酶和核酸结合蛋白Tsals的转录本表达减少。此外,发现在寄生虫到达唾液腺之前,采采蝇中肠的锥虫感染就已经影响了唾液腺中一些基因类别的表达。 结论:本研究表明,采采蝇唾液腺中的布氏锥虫群体对其功能和腺上皮的完整性有负面影响。我们的RNA-seq数据表明诱导了强烈的局部组织反应,以控制上皮细胞损伤、细胞环境的ROS中毒和寄生虫感染,从而使采采蝇耐受感染。采采蝇中肠水平的锥虫感染对唾液腺中一些基因类别的表达改变表明,在寄生虫到达该组织之前,唾液腺中可能存在预期反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/20b235d57743/12864_2016_3283_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/f69cb57b54b5/12864_2016_3283_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/0288c8efe560/12864_2016_3283_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/38fffe6d38ad/12864_2016_3283_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/b454afd7feda/12864_2016_3283_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/20b235d57743/12864_2016_3283_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/f69cb57b54b5/12864_2016_3283_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/0288c8efe560/12864_2016_3283_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/38fffe6d38ad/12864_2016_3283_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/b454afd7feda/12864_2016_3283_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c92/5123318/20b235d57743/12864_2016_3283_Fig5_HTML.jpg

相似文献

[1]
Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland.

BMC Genomics. 2016-11-25

[2]
Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans.

PLoS One. 2016-12-21

[3]
Maturation of a Trypanosoma brucei infection to the infectious metacyclic stage is enhanced in nutritionally stressed tsetse flies.

J Med Entomol. 2009-11

[4]
Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands.

PLoS Negl Trop Dis. 2014-4-24

[5]
A proteomics approach reveals molecular manipulators of distinct cellular processes in the salivary glands of Glossina m. morsitans in response to Trypanosoma b. brucei infections.

Parasit Vectors. 2016-8-2

[6]
Thioester-containing proteins in the tsetse fly (Glossina) and their response to trypanosome infection.

Insect Mol Biol. 2018-6

[7]
Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission.

PLoS Pathog. 2010-6-3

[8]
The transcriptional signatures of Sodalis glossinidius in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness?

Infect Genet Evol. 2014-6

[9]
The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection.

Med Vet Entomol. 2006-12

[10]
Tsetse fly (Glossina pallidipes) midgut responses to Trypanosoma brucei challenge.

Parasit Vectors. 2017-12-19

引用本文的文献

[1]
Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes.

PLoS Pathog. 2025-1-31

[2]
endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly .

bioRxiv. 2024-10-24

[3]
The Trypanosoma brucei MISP family of invariant proteins is co-expressed with BARP as triple helical bundle structures on the surface of salivary gland forms, but is dispensable for parasite development within the tsetse vector.

PLoS Pathog. 2023-3

[4]
Vector competence of sterile male Glossina fuscipes fuscipes for Trypanosoma brucei brucei: implications for the implementation of the sterile insect technique in a sleeping sickness focus in Chad.

Parasit Vectors. 2023-3-22

[5]
Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment.

PLoS Pathog. 2021-6

[6]
The holobiont transcriptome of teneral tsetse fly species of varying vector competence.

BMC Genomics. 2021-5-31

[7]
The Tsetse Fly Displays an Attenuated Immune Response to Its Secondary Symbiont, .

Front Microbiol. 2019-7-24

[8]
Activity of the prophenoloxidase system and survival of triatomines infected with different Trypanosoma cruzi strains under different temperatures: understanding Chagas disease in the face of climate change.

Parasit Vectors. 2019-5-8

[9]
Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: current and expected research directions.

BMC Microbiol. 2018-11-23

[10]
Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives.

BMC Microbiol. 2018-11-23

本文引用的文献

[1]
The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies.

PLoS Pathog. 2016-7-21

[2]
Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins.

Insects. 2014-11-12

[3]
Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua.

Sci Rep. 2015-6-18

[4]
Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated vs. non-stimulated Glossina palpalis gambiensis flies.

Front Microbiol. 2015-5-12

[5]
Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium Antagonist.

PLoS Pathog. 2015-2-6

[6]
Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut.

PLoS Negl Trop Dis. 2015-1-8

[7]
C-type lectins in immunity: recent developments.

Curr Opin Immunol. 2015-2

[8]
Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

Insect Biochem Mol Biol. 2015-7

[9]
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014

[10]
VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases.

Nucleic Acids Res. 2015-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索