Suppr超能文献

基于创新的机械生物学检测,机器学习可提供针对转移性风险的个体化预测。

Machine-Learning Provides Patient-Specific Prediction of Metastatic Risk Based on Innovative, Mechanobiology Assay.

机构信息

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.

出版信息

Ann Biomed Eng. 2021 Jul;49(7):1774-1783. doi: 10.1007/s10439-020-02720-9. Epub 2021 Jan 22.

Abstract

Cancer mortality is mostly related to metastasis. Metastasis is currently prognosed via histopathology, disease-statistics, or genetics; those are potentially inaccurate, not rapidly available and require known markers. We had developed a rapid (~ 2 h) mechanobiology-based approach to provide early prognosis of the clinical likelihood for metastasis. Specifically, invasive cell-subsets seeded on impenetrable, physiological-stiffness polyacrylamide gels forcefully indent the gels, while non-invasive/benign cells do not. The number of indenting cells and their attained depths, the mechanical invasiveness, accurately define the metastatic risk of tumors and cell-lines. Utilizing our experimental database, we compare the capacity of several machine learning models to predict the metastatic risk. Models underwent supervised training on individual experiments using classification from literature and commercial-sources for established cell-lines and clinical histopathology reports for tumor samples. We evaluated 2-class models, separating invasive/non-invasive (e.g. benign) samples, and obtained sensitivity and specificity of 0.92 and 1, respectively; this surpasses other works. We also introduce a novel approach, using 5-class models (i.e. normal, benign, cancer-metastatic-non/low/high) that provided average sensitivity and specificity of 0.69 and 0.91. Combining our rapid, mechanical invasiveness assay with machine learning classification can provide accurate and early prognosis of metastatic risk, to support choice of treatments and disease management.

摘要

癌症死亡率主要与转移有关。目前,转移是通过组织病理学、疾病统计或遗传学来预测的;这些方法可能不准确,不能快速获得,并且需要已知的标志物。我们开发了一种快速(~2 小时)基于力学生物学的方法,为转移的临床可能性提供早期预后。具体来说,侵袭性细胞亚群接种在不可渗透的、生理硬度的聚丙烯酰胺凝胶上,会强力压入凝胶,而非侵袭性/良性细胞则不会。压入细胞的数量及其达到的深度,即力学侵袭性,准确地定义了肿瘤和细胞系的转移风险。利用我们的实验数据库,我们比较了几种机器学习模型预测转移风险的能力。模型在个体实验中接受监督训练,使用文献中的分类和商业来源的分类来对已建立的细胞系进行分类,并对肿瘤样本的临床组织病理学报告进行分类。我们评估了 2 类模型,将侵袭性/非侵袭性(例如良性)样本分开,分别获得了 0.92 和 1 的敏感性和特异性;这超过了其他研究。我们还引入了一种新方法,使用 5 类模型(即正常、良性、癌症转移-非/低/高),平均敏感性和特异性分别为 0.69 和 0.91。将我们的快速力学侵袭性测定法与机器学习分类相结合,可以为转移风险提供准确且早期的预后,以支持治疗方案的选择和疾病管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验