Suppr超能文献

丝氨酸剥夺时需要下调鞘氨醇激酶 1 以适应环境。

Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation.

机构信息

Department of Medicine, Stony Brook University, Stony Brook, NY, USA.

The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.

出版信息

FASEB J. 2021 Feb;35(2):e21284. doi: 10.1096/fj.202001814RR.

Abstract

It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.

摘要

已经证实癌细胞通常表现出代谢特征的改变,最近的研究集中在癌细胞如何适应丝氨酸的去除。丝氨酸可以从外源性摄取或从葡萄糖合成,其调节形成了营养物质整合的重要机制。丝氨酸的几个重要代谢作用之一是产生生物活性鞘脂,因为它是丝氨酸棕榈酰转移酶的主要底物,丝氨酸棕榈酰转移酶是鞘脂合成的初始和限速酶。先前,丝氨酸剥夺与肿瘤抑制因子 p53 的作用有关,我们之前发表过关于 p53 调节鞘氨醇激酶 1(SK1)的作用的文章,该酶将鞘氨醇磷酸化为鞘氨醇-1-磷酸(S1P)。SK1 是鞘脂合成中的关键酶,在促生存和肿瘤促进途径中发挥作用,其表达在癌症中也经常升高。在这里,我们显示 SK1 在丝氨酸饥饿时以时间和剂量依赖的方式降解,导致鞘氨醇积累。这与 p53 的作用无关,但需要蛋白酶体的作用。此外,我们还表明,过表达 SK1 以补偿 SK1 的缺失,在丝氨酸饥饿条件下对细胞生长有害,表明在这些条件下抑制 SK1 是适应性的。线粒体耗氧量随 SK1 降解而降低,同时细胞内活性氧(ROS)增加。用 N-乙酰半胱氨酸抑制 ROS 导致代谢适应的抑制和丝氨酸剥夺下细胞生长的减少。ROS 的抑制作用与 D-erythro-鞘氨醇相似,而 S1P 无效,表明 SK1 缺失的影响是由于其底物鞘氨醇的积累。这项研究揭示了调节 SK1 水平的新机制以及 SK1 与丝氨酸饥饿以及线粒体功能的联系。

相似文献

1
Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation.
FASEB J. 2021 Feb;35(2):e21284. doi: 10.1096/fj.202001814RR.
3
Defining a role for sphingosine kinase 1 in p53-dependent tumors.
Oncogene. 2012 Mar 1;31(9):1166-75. doi: 10.1038/onc.2011.302. Epub 2011 Jul 18.
5
De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells.
Cell Signal. 2006 Oct;18(10):1779-92. doi: 10.1016/j.cellsig.2006.01.018. Epub 2006 Mar 10.
8
Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53.
J Biol Chem. 2004 May 7;279(19):20546-54. doi: 10.1074/jbc.M401259200. Epub 2004 Feb 26.
9
Short Periods of Hypoxia Upregulate Sphingosine Kinase 1 and Increase Vasodilation of Arteries to Sphingosine 1-Phosphate (S1P) via S1P.
J Pharmacol Exp Ther. 2019 Oct;371(1):63-74. doi: 10.1124/jpet.119.257931. Epub 2019 Aug 1.
10
The regulation of p53, p38 MAPK, JNK and XBP-1s by sphingosine kinases in human embryonic kidney cells.
Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Apr;1865(4):158631. doi: 10.1016/j.bbalip.2020.158631. Epub 2020 Jan 15.

引用本文的文献

1
Role of Canonical and Non-Canonical Sphingolipids and their Metabolic Enzymes in Bone Health.
Curr Osteoporos Rep. 2025 Apr 23;23(1):21. doi: 10.1007/s11914-025-00908-3.
2
1-Deoxysphingolipid synthesis compromises anchorage-independent growth and plasma membrane endocytosis in cancer cells.
J Lipid Res. 2022 Oct;63(10):100281. doi: 10.1016/j.jlr.2022.100281. Epub 2022 Sep 15.

本文引用的文献

1
Serine restriction alters sphingolipid diversity to constrain tumour growth.
Nature. 2020 Oct;586(7831):790-795. doi: 10.1038/s41586-020-2609-x. Epub 2020 Aug 12.
4
Serine catabolism is essential to maintain mitochondrial respiration in mammalian cells.
Life Sci Alliance. 2018 May 21;1(2):e201800036. doi: 10.26508/lsa.201800036. eCollection 2018 May.
5
Sphingosine Kinase Activates the Mitochondrial Unfolded Protein Response and Is Targeted to Mitochondria by Stress.
Cell Rep. 2018 Sep 11;24(11):2932-2945.e4. doi: 10.1016/j.celrep.2018.08.037.
6
Author Correction: Sphingolipids and their metabolism in physiology and disease.
Nat Rev Mol Cell Biol. 2018 Oct;19(10):673. doi: 10.1038/s41580-018-0046-6.
7
The multifaceted contributions of mitochondria to cellular metabolism.
Nat Cell Biol. 2018 Jul;20(7):745-754. doi: 10.1038/s41556-018-0124-1. Epub 2018 Jun 27.
8
Cancer Cells Co-opt the Neuronal Redox-Sensing Channel TRPA1 to Promote Oxidative-Stress Tolerance.
Cancer Cell. 2018 Jun 11;33(6):985-1003.e7. doi: 10.1016/j.ccell.2018.05.001. Epub 2018 May 24.
9
Reactive Oxygen Species in Metabolic and Inflammatory Signaling.
Circ Res. 2018 Mar 16;122(6):877-902. doi: 10.1161/CIRCRESAHA.117.311401.
10
Tumour microenvironment on mitochondrial dynamics and chemoresistance in cancer.
Free Radic Res. 2018 Dec;52(11-12):1271-1287. doi: 10.1080/10715762.2018.1459594. Epub 2018 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验