Suppr超能文献

通过两个不同的蛋白质区域与膜结合和同源二聚化的 Atg16 对于酵母自噬是必需的。

Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast.

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.

Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States.

出版信息

J Mol Biol. 2021 Mar 5;433(5):166809. doi: 10.1016/j.jmb.2021.166809. Epub 2021 Jan 21.

Abstract

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.

摘要

自噬是真核细胞中的一种批量降解机制。酵母中这个过程的一个基本步骤,即 Atg8 的脂质化,效率依赖于 Atg16 的存在,Atg16 是 Atg12-Atg5-Atg16 复合物的一个亚基,作为泛素样反应中的 E3 样酶。目前对酿酒酵母 S. cerevisiae 中 Atg16 的功能结构的看法来自两个晶体结构,这些结构揭示了 Atg5 相互作用的α-螺旋通过柔性接头与 Atg16 的另一个α-螺旋相连,然后组装成同源二聚体。这种观点并不能解释之前的体外研究结果,这些结果表明,在添加 Atg16 后,Atg12-Atg5 缀合物依赖于 Atg16 发生膜变形和与脂质体结合。在这里,我们表明 Atg16 既是同源二聚体形成蛋白又是外周膜结合蛋白。这两个特征是由新生蛋白中两个不同的无序区域所决定的。Atg16 在体内通过具有卷曲螺旋样倾向和强烈插入膜的疏水面的两性α-螺旋(氨基酸残基 113-131)与膜结合。另一个蛋白质区域(残基 64-99)具有卷曲螺旋倾向,但没有两性,对于 Atg16 膜锚定是可有可无的。该区域作为形成 Atg16 同源二聚体所必需的亮氨酸拉链。这两个不同区域中的任何一个突变都会导致 Atg16 蛋白完全不能挽救 atg16Δ 细胞的自噬缺陷表型,而野生型则可以。总的来说,这项研究的结果提供了一个自噬体形成的分子机制模型。

相似文献

1
Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast.
J Mol Biol. 2021 Mar 5;433(5):166809. doi: 10.1016/j.jmb.2021.166809. Epub 2021 Jan 21.
2
Mechanism of cargo-directed Atg8 conjugation during selective autophagy.
Elife. 2016 Nov 23;5:e18544. doi: 10.7554/eLife.18544.
3
Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation.
Autophagy. 2013 Mar;9(3):424-5. doi: 10.4161/auto.22931. Epub 2013 Jan 15.
4
Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy.
J Biol Chem. 2010 Jan 8;285(2):1508-15. doi: 10.1074/jbc.M109.053520. Epub 2009 Nov 4.
6
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation.
EMBO J. 2012 Nov 14;31(22):4304-17. doi: 10.1038/emboj.2012.278. Epub 2012 Oct 12.
8
Structure of Atg5.Atg16, a complex essential for autophagy.
J Biol Chem. 2007 Mar 2;282(9):6763-72. doi: 10.1074/jbc.M609876200. Epub 2006 Dec 27.
10
Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10112-E10121. doi: 10.1073/pnas.1708367114. Epub 2017 Nov 7.

引用本文的文献

1
Pharmacological mechanism of natural products to treat osteoporosis: a focus on the autophagy.
Front Pharmacol. 2025 Aug 1;16:1623990. doi: 10.3389/fphar.2025.1623990. eCollection 2025.
2
Autophagy: Are Amino Acid Signals Dependent on the mTORC1 Pathway or Independent?
Curr Issues Mol Biol. 2024 Aug 13;46(8):8780-8793. doi: 10.3390/cimb46080519.
3
The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease.
Front Endocrinol (Lausanne). 2024 Aug 8;15:1374644. doi: 10.3389/fendo.2024.1374644. eCollection 2024.
4
When an underdog becomes a major player: the role of protein structural disorder in the Atg8 conjugation system.
Autophagy. 2024 Oct;20(10):2338-2345. doi: 10.1080/15548627.2024.2357496. Epub 2024 May 29.
6
Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping.
Nat Struct Mol Biol. 2024 Jan;31(1):170-178. doi: 10.1038/s41594-023-01132-2. Epub 2023 Dec 6.
7
Coiled-coil-mediated dimerization of Atg16 is required for binding to the PROPPIN Atg21.
Open Biol. 2023 Nov;13(11):230192. doi: 10.1098/rsob.230192. Epub 2023 Nov 22.
8
Autophagy in hepatic ischemia-reperfusion injury.
Cell Death Discov. 2023 Apr 5;9(1):115. doi: 10.1038/s41420-023-01387-0.
10
The critical role of dysregulated autophagy in the progression of diabetic kidney disease.
Front Pharmacol. 2022 Aug 25;13:977410. doi: 10.3389/fphar.2022.977410. eCollection 2022.

本文引用的文献

1
Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore.
Autophagy. 2021 Jun;17(6):1458-1478. doi: 10.1080/15548627.2020.1766332. Epub 2020 Jun 9.
2
Folding Free Energy Landscape of Ordered and Intrinsically Disordered Proteins.
Sci Rep. 2019 Oct 17;9(1):14927. doi: 10.1038/s41598-019-50825-6.
3
Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism.
Cell Metab. 2019 Apr 2;29(4):803-826. doi: 10.1016/j.cmet.2019.03.003.
4
Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy.
EMBO J. 2019 May 2;38(9). doi: 10.15252/embj.2018100554. Epub 2019 Apr 1.
6
Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes.
Nat Cell Biol. 2019 Mar;21(3):372-383. doi: 10.1038/s41556-019-0274-9. Epub 2019 Feb 18.
7
DeepCoil-a fast and accurate prediction of coiled-coil domains in protein sequences.
Bioinformatics. 2019 Aug 15;35(16):2790-2795. doi: 10.1093/bioinformatics/bty1062.
8
The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10363-10368. doi: 10.1073/pnas.1806727115. Epub 2018 Sep 25.
9
IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding.
Nucleic Acids Res. 2018 Jul 2;46(W1):W329-W337. doi: 10.1093/nar/gky384.
10
SWISS-MODEL: homology modelling of protein structures and complexes.
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. doi: 10.1093/nar/gky427.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验