Suppr超能文献

卷积神经网络在体外受精中早期人类胚胎分割中的应用。

Application of convolutional neural network on early human embryo segmentation during in vitro fertilization.

机构信息

Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.

School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

J Cell Mol Med. 2021 Mar;25(5):2633-2644. doi: 10.1111/jcmm.16288. Epub 2021 Jan 24.

Abstract

Selection of the best quality embryo is the key for a faithful implantation in in vitro fertilization (IVF) practice. However, the process of evaluating numerous images captured by time-lapse imaging (TLI) system is time-consuming and some important features cannot be recognized by naked eyes. Convolutional neural network (CNN) is used in medical imaging yet in IVF. The study aims to apply CNN on day-one human embryo TLI. We first presented CNN algorithm for day-one human embryo segmentation on three distinct features: zona pellucida (ZP), cytoplasm and pronucleus (PN). We tested the CNN performance compared side-by-side with manual labelling by clinical embryologist, then measured the segmented day-one human embryo parameters and compared them with literature reported values. The precisions of segmentation were that cytoplasm over 97%, PN over 84% and ZP around 80%. For the morphometrics data of cytoplasm, ZP and PN, the results were comparable with those reported in literatures, which showed high reproducibility and consistency. The CNN system provides fast and stable analytical outcome to improve work efficiency in IVF setting. To conclude, our CNN system is potential to be applied in practice for day-one human embryo segmentation as a robust tool with high precision, reproducibility and speed.

摘要

选择最佳质量的胚胎是体外受精 (IVF) 实践中实现胚胎着床的关键。然而,评估延时成像 (TLI) 系统捕获的大量图像的过程既耗时又费力,而且一些重要特征无法用肉眼识别。卷积神经网络 (CNN) 已应用于医学成像领域,但尚未应用于 IVF 领域。本研究旨在将 CNN 应用于第一天的人类胚胎 TLI。我们首先提出了一种用于第一天人类胚胎分割的 CNN 算法,该算法基于三个不同的特征:透明带 (ZP)、细胞质和原核 (PN)。我们将 CNN 性能与临床胚胎学家的手动标记进行了并排测试,然后测量了分割后的第一天人类胚胎参数,并将其与文献报道的值进行了比较。细胞质、PN 和 ZP 的分割精度分别超过 97%、84%和 80%。对于细胞质、ZP 和 PN 的形态计量数据,结果与文献报道的结果相当,这表明该方法具有较高的可重复性和一致性。CNN 系统提供了快速而稳定的分析结果,可提高 IVF 环境中的工作效率。总之,我们的 CNN 系统有可能作为一种高精度、高重复性和高速度的强大工具,应用于第一天人类胚胎分割的实际操作中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3127/7933952/117fe7adf60a/JCMM-25-2633-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验