Suppr超能文献

用于 Wald 检验、似然比检验和得分检验的幂函数近似值及其在线性回归和逻辑回归中的应用。

Approximations of the power functions for Wald, likelihood ratio, and score tests and their applications to linear and logistic regressions.

作者信息

Demidenko Eugene

机构信息

Dartmouth College, Hanover, NH 03755, USA.

出版信息

Model Assist Stat Appl. 2020;15(4):335-349. doi: 10.3233/mas-200505. Epub 2020 Dec 25.

Abstract

Traditionally, asymptotic tests are studied and applied under local alternative (Aivazian, et al., 1985). There exists a widespread opinion that the Wald, likelihood ratio, and score tests are asymptotically equivalent. We dispel this myth by showing that These tests have different statistical power in the presence of nuisance parameters. The local properties of the tests are described in terms of the first and second derivative evaluated at the null hypothesis. The comparison of the tests are illustrated with two popular regression models: linear regression with random predictor and logistic regression with binary covariate. We study the aberrant behavior of the tests when the distance between the null and alternative does not vanish with the sample size. We demonstrate that these tests have different asymptotic power. In particular, the score test is generally asymptotically biased but slightly superior for linear regression in a close neighborhood of the null. The power approximations are confirmed through simulations.

摘要

传统上,渐近检验是在局部备择假设下进行研究和应用的(艾瓦齐安等人,1985年)。有一种普遍的观点认为, Wald检验、似然比检验和得分检验在渐近意义上是等价的。我们通过表明在存在干扰参数的情况下这些检验具有不同的统计功效来消除这一误解。检验的局部性质是根据在原假设处评估的一阶和二阶导数来描述的。通过两个流行的回归模型来说明检验的比较:具有随机预测变量的线性回归和具有二元协变量的逻辑回归。我们研究了当原假设和备择假设之间的距离不随样本量消失时检验的异常行为。我们证明这些检验具有不同的渐近功效。特别是,得分检验通常在渐近意义上有偏差,但在原假设的紧邻域内对于线性回归略胜一筹。通过模拟证实了功效近似。

相似文献

8
Permutation tests for random effects in linear mixed models.线性混合模型中随机效应的排列检验。
Biometrics. 2012 Jun;68(2):486-93. doi: 10.1111/j.1541-0420.2011.01675.x. Epub 2011 Sep 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验