Pretschner Anna, Pabel Sophie, Haas Markus, Heiner Monika, Marwan Wolfgang
Magdeburg Centre for Systems Biology and Institute of Biology, Otto von Guericke University, Magdeburg, Germany.
Computer Science Institute, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany.
Front Genet. 2021 Jan 8;11:612256. doi: 10.3389/fgene.2020.612256. eCollection 2020.
Dynamics of cell fate decisions are commonly investigated by inferring temporal sequences of gene expression states by assembling snapshots of individual cells where each cell is measured once. Ordering cells according to minimal differences in expression patterns and assuming that differentiation occurs by a sequence of irreversible steps, yields unidirectional, eventually branching Markov chains with a single source node. In an alternative approach, we used multi-nucleate cells to follow gene expression taking true time series. Assembling state machines, each made from single-cell trajectories, gives a network of highly structured Markov chains of states with different source and sink nodes including cycles, revealing essential information on the dynamics of regulatory events. We argue that the obtained networks depict aspects of the Waddington landscape of cell differentiation and characterize them as reachability graphs that provide the basis for the reconstruction of the underlying gene regulatory network.
细胞命运决定的动力学通常是通过组装单个细胞的快照来推断基因表达状态的时间序列进行研究的,其中每个细胞只测量一次。根据表达模式的最小差异对细胞进行排序,并假设分化是通过一系列不可逆步骤发生的,这会产生具有单个源节点的单向、最终分支的马尔可夫链。在另一种方法中,我们使用多核细胞来跟踪真实时间序列中的基因表达。组装状态机,每个状态机由单细胞轨迹组成,得到一个具有不同源节点和汇节点(包括循环)的高度结构化状态马尔可夫链网络,揭示了调控事件动力学的基本信息。我们认为,所获得的网络描绘了细胞分化的沃丁顿景观的各个方面,并将它们表征为可达性图,为重建潜在的基因调控网络提供了基础。