Suppr超能文献

利用布尔网络模型确定细胞状态的相对动态稳定性。

Determining Relative Dynamic Stability of Cell States Using Boolean Network Model.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Institute for Systems Biology, Seattle, WA, USA.

出版信息

Sci Rep. 2018 Aug 13;8(1):12077. doi: 10.1038/s41598-018-30544-0.

Abstract

Cell state transition is at the core of biological processes in metazoan, which includes cell differentiation, epithelial-to-mesenchymal transition (EMT) and cell reprogramming. In these cases, it is important to understand the molecular mechanism of cellular stability and how the transitions happen between different cell states, which is controlled by a gene regulatory network (GRN) hard-wired in the genome. Here we use Boolean modeling of GRN to study the cell state transition of EMT and systematically compare four available methods to calculate the cellular stability of three cell states in EMT in both normal and genetically mutated cases. The results produced from four methods generally agree but do not totally agree with each other. We show that distribution of one-degree neighborhood of cell states, which are the nearest states by Hamming distance, causes the difference among the methods. From that, we propose a new method based on one-degree neighborhood, which is the simplest one and agrees with other methods to estimate the cellular stability in all scenarios of our EMT model. This new method will help the researchers in the field of cell differentiation and cell reprogramming to calculate cellular stability using Boolean model, and then rationally design their experimental protocols to manipulate the cell state transition.

摘要

细胞状态的转变是多细胞生物过程的核心,包括细胞分化、上皮-间质转化 (EMT) 和细胞重编程。在这些情况下,了解细胞稳定性的分子机制以及不同细胞状态之间如何发生转变非常重要,而这是由基因组中硬连线的基因调控网络 (GRN) 控制的。在这里,我们使用 GRN 的布尔模型来研究 EMT 的细胞状态转变,并系统地比较了四种可用的方法来计算 EMT 中三种细胞状态的细胞稳定性,包括正常情况和遗传突变情况。四种方法的结果总体上一致,但不完全一致。我们表明,细胞状态的一阶邻域的分布,即汉明距离最近的状态,导致了方法之间的差异。由此,我们提出了一种基于一阶邻域的新方法,该方法最简单,与其他方法一致,可用于估计我们 EMT 模型中所有场景下的细胞稳定性。这种新方法将帮助细胞分化和细胞重编程领域的研究人员使用布尔模型计算细胞稳定性,然后合理设计实验方案来操纵细胞状态的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/6089891/347a0152797e/41598_2018_30544_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验