Suppr超能文献

分类算法在肝综合征早期检测中的性能评估。

Performance Assessment of Classification Algorithms on Early Detection of Liver Syndrome.

机构信息

Department of IT and Computer Science, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan.

Department of Computer Science, City University of Science and Information Technology, Peshawar, Pakistan.

出版信息

J Healthc Eng. 2020 Dec 12;2020:6680002. doi: 10.1155/2020/6680002. eCollection 2020.

Abstract

In the recent era, a liver syndrome that causes any damage in life capacity is exceptionally normal everywhere throughout the world. It has been found that liver disease is exposed more in young people as a comparison with other aged people. At the point when liver capacity ends up, life endures just up to 1 or 2 days scarcely, and it is very hard to predict such illness in the early stage. Researchers are trying to project a model for early prediction of liver disease utilizing various machine learning approaches. However, this study compares ten classifiers including A1DE, NB, MLP, SVM, KNN, CHIRP, CDT, Forest-PA, J48, and RF to find the optimal solution for early and accurate prediction of liver disease. The datasets utilized in this study are taken from the UCI ML repository and the GitHub repository. The outcomes are assessed via RMSE, RRSE, recall, specificity, precision, G-measure, F-measure, MCC, and accuracy. The exploratory outcomes show a better consequence of RF utilizing the UCI dataset. Assessing RF using RMSE and RRSE, the outcomes are 0.4328 and 87.6766, while the accuracy of RF is 72.1739% that is also better than other employed classifiers. However, utilizing the GitHub dataset, SVM beats other employed techniques in terms of increasing accuracy up to 71.3551%. Moreover, the comprehensive outcomes of this exploration can be utilized as a reference point for further research studies that slight assertion concerning the enhancement in extrapolation through any new technique, model, or framework can be benchmarked and confirmed.

摘要

在当今时代,世界各地任何一种导致生命能力受损的肝脏综合征都极为常见。研究发现,与其他年龄段的人相比,年轻人更容易患肝病。当肝功能衰竭时,生命只能勉强维持 1 到 2 天,而且很难在早期预测这种疾病。研究人员正在尝试利用各种机器学习方法为肝病的早期预测建立模型。然而,本研究比较了包括 A1DE、NB、MLP、SVM、KNN、CHIRP、CDT、Forest-PA、J48 和 RF 在内的十种分类器,以寻找早期准确预测肝病的最佳解决方案。本研究使用的数据集来自 UCI ML 存储库和 GitHub 存储库。通过 RMSE、RRSE、召回率、特异性、精度、G 度量、F 度量、MCC 和准确性来评估结果。探索性结果表明,RF 在使用 UCI 数据集时会产生更好的结果。使用 RMSE 和 RRSE 评估 RF,结果分别为 0.4328 和 87.6766,而 RF 的准确率为 72.1739%,也优于其他使用的分类器。然而,在使用 GitHub 数据集时,SVM 在提高准确率方面优于其他使用的技术,准确率高达 71.3551%。此外,本研究的综合结果可以用作进一步研究的参考点,任何新技术、模型或框架的改进都可以通过基准测试和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5092/7787853/bba47d917cdc/JHE2020-6680002.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验