Suppr超能文献

通过评估集成学习方法提高临床数据中的肝病预测能力。

Improved liver disease prediction from clinical data through an evaluation of ensemble learning approaches.

机构信息

AI Research Centre, Department of Analytics, School of Business, Woxsen University, Hyderabad, Telangana, 502345, India.

School of Computer Applications and Technology, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India.

出版信息

BMC Med Inform Decis Mak. 2024 Jun 7;24(1):160. doi: 10.1186/s12911-024-02550-y.

Abstract

PURPOSE

Liver disease causes two million deaths annually, accounting for 4% of all deaths globally. Prediction or early detection of the disease via machine learning algorithms on large clinical data have become promising and potentially powerful, but such methods often have some limitations due to the complexity of the data. In this regard, ensemble learning has shown promising results. There is an urgent need to evaluate different algorithms and then suggest a robust ensemble algorithm in liver disease prediction.

METHOD

Three ensemble approaches with nine algorithms are evaluated on a large dataset of liver patients comprising 30,691 samples with 11 features. Various preprocessing procedures are utilized to feed the proposed model with better quality data, in addition to the appropriate tuning of hyperparameters and selection of features.

RESULTS

The models' performances with each algorithm are extensively evaluated with several positive and negative performance metrics along with runtime. Gradient boosting is found to have the overall best performance with 98.80% accuracy and 98.50% precision, recall and F1-score for each.

CONCLUSIONS

The proposed model with gradient boosting bettered in most metrics compared with several recent similar works, suggesting its efficacy in predicting liver disease. It can be further applied to predict other diseases with the commonality of predicate indicators.

摘要

目的

肝脏疾病每年导致 200 万人死亡,占全球总死亡人数的 4%。通过机器学习算法对大型临床数据进行疾病预测或早期检测已经变得很有前景,也极具潜力,但由于数据的复杂性,这些方法往往存在一些局限性。在这方面,集成学习显示出了很有前景的结果。因此,迫切需要评估不同的算法,然后在肝脏疾病预测中提出一个稳健的集成算法。

方法

在一个包含 30691 个样本和 11 个特征的大型肝脏患者数据集上,评估了三种集成方法和九种算法。除了适当调整超参数和选择特征外,还利用了各种预处理程序来为所提出的模型提供质量更好的数据。

结果

通过多种正、负性能指标以及运行时间,对每个算法的模型性能进行了广泛评估。梯度提升被发现具有总体最佳性能,其准确率、精度、召回率和 F1 得分为 98.80%、98.50%、98.50%和 98.50%。

结论

与最近的一些类似工作相比,所提出的基于梯度提升的模型在大多数指标上都有所改进,这表明它在预测肝脏疾病方面的有效性。它可以进一步应用于预测其他具有相同预测指标的疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9194/11157956/8b0716117b6e/12911_2024_2550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验