Menezes Prashanth W, Walter Carsten, Chakraborty Biswarup, Hausmann Jan Niklas, Zaharieva Ivelina, Frick Achidi, von Hauff Elizabeth, Dau Holger, Driess Matthias
Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, Berlin, 10623, Germany.
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
Adv Mater. 2021 Mar;33(9):e2004098. doi: 10.1002/adma.202004098. Epub 2021 Jan 25.
One of the key catalytic reactions for life on earth, the oxidation of water to molecular oxygen, occurs in the oxygen-evolving complex of the photosystem II (PSII) mediated by a manganese-containing cluster. Considerable efforts in this research area embrace the development of efficient artificial manganese-based catalysts for the oxygen evolution reaction (OER). Using artificial OER catalysts for selective oxygenation of organic substrates to produce value-added chemicals is a worthwhile objective. However, unsatisfying catalytic performance and poor stability have been a fundamental bottleneck in the field of artificial PSII analogs. Herein, for the first time, a manganese-based anode material is developed and paired up for combining electrocatalytic water oxidation and selective oxygenations of organics delivering the highest efficiency reported to date. This can be achieved by employing helical manganese borophosphates, representing a new class of materials. The uniquely high catalytic activity and durability (over 5 months) of the latter precursors in alkaline media are attributed to its unexpected surface transformation into an amorphous MnO phase with a birnessite-like short-range order and surface-stabilized Mn sites under extended electrical bias, as unequivocally demonstrated by a combination of in situ Raman and quasi in situ X-ray absorption spectroscopy as well as ex situ methods.
地球上生命的关键催化反应之一,即水氧化为分子氧,发生在由含锰簇介导的光系统II(PSII)的析氧复合物中。该研究领域的大量工作致力于开发用于析氧反应(OER)的高效人工锰基催化剂。使用人工OER催化剂对有机底物进行选择性氧化以生产增值化学品是一个有价值的目标。然而,催化性能不尽人意和稳定性差一直是人工PSII类似物领域的一个基本瓶颈。在此,首次开发了一种锰基阳极材料,并将其配对用于结合电催化水氧化和有机物的选择性氧化,实现了迄今为止报道的最高效率。这可以通过使用螺旋状硼磷酸锰来实现,它代表了一类新型材料。后一种前驱体在碱性介质中独特的高催化活性和耐久性(超过5个月)归因于其在长时间电偏压下意外地表面转变为具有水钠锰矿样短程有序结构的非晶MnO相以及表面稳定的Mn位点,原位拉曼光谱、准原位X射线吸收光谱以及非原位方法的结合明确证实了这一点。