Gobetto María Natalia, González-Inchauspe Carlota, Uchitel Osvaldo D
Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina.
Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina.
Neuroscience. 2021 Apr 15;460:145-160. doi: 10.1016/j.neuroscience.2021.01.022. Epub 2021 Jan 23.
Increase in proton concentration [H] or decrease in local and global extracellular pH occurs in both physiological and pathological conditions. Acid-sensing ion channels (ASICs), belonging to the ENaC/Deg superfamily, play an important role in signal transduction as proton sensor. ASICs and in particular ASIC1a (one of the six ASICs subunits) which is permeable to Ca, are involved in many physiological processes including synaptic plasticity and neurodegenerative diseases. Activity-dependent long-term potentiation (LTP) is a major type of long-lasting synaptic plasticity in the CNS, associated with learning, memory, development, fear and persistent pain. Neurons in the anterior cingulate cortex (ACC) play critical roles in pain perception and chronic pain and express ASIC1a channels. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H from synaptic vesicles activates postsynaptic ASIC1a channels in ACC of mice. This generates ASIC1a synaptic currents that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that modulators like histamine and corticosterone, acting through ASIC1a regulate synaptic plasticity, reducing the threshold for LTP induction of glutamatergic EPSCs. Our findings suggest a new role for ASIC1a mediating the neuromodulator action of histamine and corticosterone regulating specific forms of synaptic plasticity in the mouse ACC.
在生理和病理条件下,质子浓度[H⁺]都会升高,局部和整体细胞外pH值都会降低。酸敏感离子通道(ASICs)属于ENaC/Deg超家族,作为质子传感器在信号转导中起重要作用。ASICs,特别是对Ca²⁺通透的ASIC1a(六个ASICs亚基之一),参与包括突触可塑性和神经退行性疾病在内的许多生理过程。活动依赖的长时程增强(LTP)是中枢神经系统中一种主要的持久突触可塑性类型,与学习、记忆、发育、恐惧和持续性疼痛有关。前扣带回皮质(ACC)中的神经元在疼痛感知和慢性疼痛中起关键作用,并表达ASIC1a通道。在突触传递过程中,突触间隙的酸化可能是由于神经递质和来自突触小泡的H⁺共同释放,激活了小鼠ACC中的突触后ASIC1a通道。这产生了ASIC1a突触电流,该电流叠加在谷氨酸能兴奋性突触后电流(EPSCs)上。在这里,我们报告组胺和皮质酮等调节剂通过ASIC1a起作用,调节突触可塑性,降低谷氨酸能EPSCs的LTP诱导阈值。我们的研究结果表明ASIC1a在介导组胺和皮质酮的神经调节作用方面具有新的作用,调节小鼠ACC中特定形式的突触可塑性。