Suppr超能文献

中距离行程中驾驶员疲劳和困倦的道路检测

On-Road Detection of Driver Fatigue and Drowsiness during Medium-Distance Journeys.

作者信息

Salvati Luca, d'Amore Matteo, Fiorentino Anita, Pellegrino Arcangelo, Sena Pasquale, Villecco Francesco

机构信息

Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.

Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.

出版信息

Entropy (Basel). 2021 Jan 21;23(2):135. doi: 10.3390/e23020135.

Abstract

The detection of driver fatigue as a cause of sleepiness is a key technology capable of preventing fatal accidents. This research uses a fatigue-related sleepiness detection algorithm based on the analysis of the pulse rate variability generated by the heartbeat and validates the proposed method by comparing it with an objective indicator of sleepiness (PERCLOS). : changes in alert conditions affect the autonomic nervous system (ANS) and therefore heart rate variability (HRV), modulated in the form of a wave and monitored to detect long-term changes in the driver's condition using real-time control. : the performance of the algorithm was evaluated through an experiment carried out in a road vehicle. In this experiment, data was recorded by three participants during different driving sessions and their conditions of fatigue and sleepiness were documented on both a subjective and objective basis. The validation of the results through PERCLOS showed a 63% adherence to the experimental findings. : the present study confirms the possibility of continuously monitoring the driver's status through the detection of the activation/deactivation states of the ANS based on HRV. The proposed method can help prevent accidents caused by drowsiness while driving.

摘要

检测驾驶员疲劳作为嗜睡的一个原因是一项能够预防致命事故的关键技术。本研究使用一种基于对心跳产生的脉搏率变异性进行分析的与疲劳相关的嗜睡检测算法,并通过将其与嗜睡的客观指标(闭眼时间百分比)进行比较来验证所提出的方法。:警觉状态的变化会影响自主神经系统(ANS),进而影响心率变异性(HRV),HRV以波动形式被调制,并通过实时控制进行监测以检测驾驶员状态的长期变化。:通过在道路车辆上进行的实验对该算法的性能进行了评估。在该实验中,三名参与者在不同的驾驶时段记录数据,并在主观和客观基础上记录他们的疲劳和嗜睡状况。通过闭眼时间百分比对结果进行验证,结果显示与实验结果的符合率为63%。:本研究证实了基于心率变异性通过检测自主神经系统的激活/失活状态来持续监测驾驶员状态的可能性。所提出的方法有助于预防驾驶时因困倦导致的事故。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2088/7912473/dd3783133e02/entropy-23-00135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验