Li Gang, Chung Wan-Young
Department of Electronic Engineering, Pukyong National University, Busan 608-737, Korea.
Sensors (Basel). 2015 Aug 21;15(8):20873-93. doi: 10.3390/s150820873.
Driver drowsiness is a major cause of mortality in traffic accidents worldwide. Electroencephalographic (EEG) signal, which reflects the brain activities, is more directly related to drowsiness. Thus, many Brain-Machine-Interface (BMI) systems have been proposed to detect driver drowsiness. However, detecting driver drowsiness at its early stage poses a major practical hurdle when using existing BMI systems. This study proposes a context-aware BMI system aimed to detect driver drowsiness at its early stage by enriching the EEG data with the intensity of head-movements. The proposed system is carefully designed for low-power consumption with on-chip feature extraction and low energy Bluetooth connection. Also, the proposed system is implemented using JAVA programming language as a mobile application for on-line analysis. In total, 266 datasets obtained from six subjects who participated in a one-hour monotonous driving simulation experiment were used to evaluate this system. According to a video-based reference, the proposed system obtained an overall detection accuracy of 82.71% for classifying alert and slightly drowsy events by using EEG data alone and 96.24% by using the hybrid data of head-movement and EEG. These results indicate that the combination of EEG data and head-movement contextual information constitutes a robust solution for the early detection of driver drowsiness.
驾驶员疲劳是全球交通事故死亡的主要原因。脑电图(EEG)信号反映大脑活动,与疲劳更为直接相关。因此,人们提出了许多脑机接口(BMI)系统来检测驾驶员疲劳。然而,在使用现有的BMI系统时,在早期阶段检测驾驶员疲劳存在一个主要的实际障碍。本研究提出了一种情境感知BMI系统,旨在通过利用头部运动强度丰富EEG数据,在早期阶段检测驾驶员疲劳。所提出的系统经过精心设计,具有片上特征提取和低功耗蓝牙连接功能,以实现低功耗。此外,所提出的系统使用Java编程语言作为移动应用程序来进行在线分析。总共使用了从六名参与一小时单调驾驶模拟实验的受试者那里获得的266个数据集来评估该系统。根据基于视频的参考标准,所提出的系统仅使用EEG数据对警觉和轻度困倦事件进行分类时,总体检测准确率为82.71%,而使用头部运动和EEG的混合数据时,总体检测准确率为96.24%。这些结果表明,EEG数据和头部运动情境信息的结合为早期检测驾驶员疲劳提供了一个可靠的解决方案。