BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, 55108, USA.
Sci Rep. 2021 Jan 25;11(1):2165. doi: 10.1038/s41598-021-81412-3.
Neutrophilic Fe(II) oxidizing bacteria like Mariprofundus ferrooxydans are obligate chemolithoautotrophic bacteria that play an important role in the biogeochemical cycling of iron and other elements in multiple environments. These bacteria generally exhibit a singular metabolic mode of growth which prohibits comparative "omics" studies. Furthermore, these bacteria are considered non-amenable to classical genetic methods due to low cell densities, the inability to form colonies on solid medium, and production of copious amounts of insoluble iron oxyhydroxides as their metabolic byproduct. Consequently, the molecular and biochemical understanding of these bacteria remains speculative despite the availability of substantial genomic information. Here we develop the first genetic system in neutrophilic Fe(II) oxidizing bacterium and use it to engineer lithoheterotrophy in M. ferrooxydans, a metabolism that has been speculated but not experimentally validated. This synthetic biology approach could be extended to gain physiological understanding and domesticate other bacteria that grow using a single metabolic mode.
类似于 Mariprofundus ferrooxydans 的嗜中性亚铁氧化细菌是专性化能自养细菌,它们在多种环境中对铁和其他元素的生物地球化学循环起着重要作用。这些细菌通常表现出单一的代谢生长模式,这妨碍了比较“组学”研究。此外,由于细胞密度低、在固体培养基上不能形成菌落以及大量不溶性铁氢氧化物作为代谢副产物的产生,这些细菌被认为不适用于经典的遗传方法。因此,尽管有大量的基因组信息,但这些细菌的分子和生化理解仍然是推测性的。在这里,我们开发了第一个嗜中性亚铁氧化细菌的遗传系统,并利用它来工程化改造 M. ferrooxydans 的异养自养,这种代谢方式虽然已经被推测,但尚未经过实验验证。这种合成生物学方法可以扩展到获得生理理解,并驯化其他使用单一代谢模式生长的细菌。