Suppr超能文献

好的,我可以将这段文本翻译为简体中文。 微需氧条件下 Fe(II)氧化的生物地球化学和微生物学。

Biogeochemistry and microbiology of microaerobic Fe(II) oxidation.

机构信息

Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA.

出版信息

Biochem Soc Trans. 2012 Dec 1;40(6):1211-6. doi: 10.1042/BST20120154.

Abstract

Today high Fe(II) environments are relegated to oxic-anoxic habitats with opposing gradients of O2 and Fe(II); however, during the late Archaean and early Proterozoic eons, atmospheric O2 concentrations were much lower and aqueous Fe(II) concentrations were significantly higher. In current Fe(II)-rich environments, such as hydrothermal vents, mudflats, freshwater wetlands or the rhizosphere, rusty mat-like deposits are common. The presence of abundant biogenic microtubular or filamentous iron oxyhydroxides readily reveals the role of FeOB (iron-oxidizing bacteria) in iron mat formation. Cultivation and cultivation-independent techniques, confirm that FeOB are abundant in these mats. Despite remarkable similarities in morphological characteristics between marine and freshwater FeOB communities, the resident populations of FeOB are phylogenetically distinct, with marine populations related to the class Zetaproteobacteria, whereas freshwater populations are dominated by members of the Gallionallaceae, a family within the Betaproteobacteria. Little is known about the mechanism of how FeOB acquire electrons from Fe(II), although it is assumed that it involves electron transfer from the site of iron oxidation at the cell surface to the cytoplasmic membrane. Comparative genomics between freshwater and marine strains reveals few shared genes, except for a suite of genes that include a class of molybdopterin oxidoreductase that could be involved in iron oxidation via extracellular electron transport. Other genes are implicated as well, and the overall genomic analysis reveals a group of organisms exquisitely adapted for growth on iron.

摘要

如今,高 Fe(II) 环境仅限于具有 O2 和 Fe(II) 相反梯度的好氧-缺氧栖息地;然而,在晚太古宙和早元古代,大气 O2 浓度要低得多,水合 Fe(II) 浓度要高得多。在当前富铁环境中,如热液喷口、泥滩、淡水湿地或根际,常见生锈的席状沉积物。大量生物源微管状或丝状铁氢氧化物的存在很容易揭示 FeOB(铁氧化细菌)在铁席形成中的作用。培养和非培养技术证实,这些席中富含 FeOB。尽管海洋和淡水 FeOB 群落的形态特征非常相似,但驻留的 FeOB 种群在系统发育上是不同的,海洋种群与 Zetaproteobacteria 纲有关,而淡水种群则主要由 Betaproteobacteria 纲的 Gallionallaceae 科的成员组成。尽管人们对 FeOB 如何从 Fe(II) 中获取电子的机制知之甚少,但人们认为这涉及到从细胞表面的铁氧化部位到细胞质膜的电子转移。淡水和海洋菌株之间的比较基因组学揭示了很少有共享基因,除了一类包含钼喋呤氧化还原酶的基因,这些基因可能通过细胞外电子传递参与铁氧化。其他基因也有牵连,整体基因组分析揭示了一组对铁生长高度适应的生物体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验