Suppr超能文献

诱导多能干细胞模型在神经退行性疾病中研究病理性蛋白的当前和未来应用。

Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders.

机构信息

Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.

Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.

出版信息

Mol Psychiatry. 2021 Jul;26(7):2685-2706. doi: 10.1038/s41380-020-00999-7. Epub 2021 Jan 25.

Abstract

Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.

摘要

神经退行性疾病源于复杂细胞机制的失效,这最终导致脆弱神经元群体的丧失。现在,多个实验室的研究提供了令人信服的证据,表明致病蛋白也可以导致几种神经退行性疾病(包括阿尔茨海默病、帕金森病、亨廷顿病和肌萎缩性侧索硬化症)中的非细胞自主毒性。鉴于此类疾病中异常蛋白积累几乎无处不在,阐明这些过程背后的机制和途径对于开发有效治疗方法至关重要。为此,生理相关的人类体外模型对于理解生理或病理条件下摄取、释放和成核等过程至关重要。本文探讨了使用人类诱导多能干细胞(iPSC)来研究神经退行性疾病中朊病毒样蛋白传播的应用,讨论了该模型的优缺点,并介绍了新兴技术,这些技术与基于 iPSC 模型的使用相结合,将为推进基础研究提供强大的模型系统。

相似文献

3
Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality?
J Cell Physiol. 2020 Dec;235(12):9166-9184. doi: 10.1002/jcp.29800. Epub 2020 May 21.
4
Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
Brain Res. 2016 May 1;1638(Pt A):30-41. doi: 10.1016/j.brainres.2015.09.023. Epub 2015 Sep 28.
5
Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models.
Cell Calcium. 2021 Mar;94:102362. doi: 10.1016/j.ceca.2021.102362. Epub 2021 Jan 30.
7
Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance.
Mol Psychiatry. 2022 Jan;27(1):269-280. doi: 10.1038/s41380-021-01350-4.
8
Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases.
Biochim Biophys Acta Mol Basis Dis. 2020 Apr 1;1866(4):165431. doi: 10.1016/j.bbadis.2019.03.004. Epub 2019 Mar 18.
9
Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.
Mol Neurobiol. 2015 Aug;52(1):244-55. doi: 10.1007/s12035-014-8867-6. Epub 2014 Aug 23.
10
Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations.
Curr Stem Cell Res Ther. 2020;15(2):102-110. doi: 10.2174/1574888X14666190823142911.

引用本文的文献

1
Nanotherapeutic Strategies for Overcoming the Blood-Brain Barrier: Applications in Disease Modeling and Drug Delivery.
ACS Omega. 2025 Jul 24;10(30):32606-32625. doi: 10.1021/acsomega.5c02206. eCollection 2025 Aug 5.
2
Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer's disease.
Mol Psychiatry. 2025 Jun;30(6):2265-2283. doi: 10.1038/s41380-024-02833-w. Epub 2024 Nov 25.
3
Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis.
Cells. 2024 May 7;13(10):792. doi: 10.3390/cells13100792.
6
Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy.
Mol Cancer. 2023 Nov 28;22(1):189. doi: 10.1186/s12943-023-01873-0.
7
Getting closer to modeling the gut-brain axis using induced pluripotent stem cells.
Front Cell Dev Biol. 2023 Mar 31;11:1146062. doi: 10.3389/fcell.2023.1146062. eCollection 2023.
8
Mitochondrial Ca Signaling and Bioenergetics in Alzheimer's Disease.
Biomedicines. 2022 Nov 24;10(12):3025. doi: 10.3390/biomedicines10123025.
10
Passive immunization against phosphorylated tau improves features of Huntington's disease pathology.
Mol Ther. 2022 Apr 6;30(4):1500-1522. doi: 10.1016/j.ymthe.2022.01.020. Epub 2022 Jan 17.

本文引用的文献

1
Species-specific pace of development is associated with differences in protein stability.
Science. 2020 Sep 18;369(6510). doi: 10.1126/science.aba7667.
2
Kinetics and Specificity of HEK293T Extracellular Vesicle Uptake using Imaging Flow Cytometry.
Nanoscale Res Lett. 2020 Aug 24;15(1):170. doi: 10.1186/s11671-020-03399-6.
3
The endothelium, a key actor in organ development and hPSC-derived organoid vascularization.
J Biomed Sci. 2020 May 22;27(1):67. doi: 10.1186/s12929-020-00661-y.
4
A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases.
Acta Neuropathol Commun. 2020 Feb 22;8(1):22. doi: 10.1186/s40478-020-0887-z.
5
Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice.
Nat Neurosci. 2020 Mar;23(3):327-336. doi: 10.1038/s41593-020-0589-7. Epub 2020 Feb 17.
6
Differences Between Human and Murine Tau at the N-terminal End.
Front Aging Neurosci. 2020 Jan 28;12:11. doi: 10.3389/fnagi.2020.00011. eCollection 2020.
7
Gene expression in immortalized versus primary isolated cardiac endothelial cells.
Sci Rep. 2020 Feb 10;10(1):2241. doi: 10.1038/s41598-020-59213-x.
8
Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility.
Dis Model Mech. 2020 Jan 17;13(1):dmm042317. doi: 10.1242/dmm.042317.
9
Human iPSC-derived microglia: A growing toolset to study the brain's innate immune cells.
Glia. 2020 Apr;68(4):721-739. doi: 10.1002/glia.23781. Epub 2020 Jan 11.
10
PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins.
Acta Neuropathol. 2020 Mar;139(3):503-526. doi: 10.1007/s00401-019-02114-9. Epub 2019 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验