INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France.
DHU Hépatinov, Villejuif, France.
J Biomed Sci. 2020 May 22;27(1):67. doi: 10.1186/s12929-020-00661-y.
Over the last 4 decades, cell culture techniques have evolved towards the creation of in vitro multicellular entities that incorporate the three-dimensional complexity of in vivo tissues and organs. As a result, stem cells and adult progenitor cells have been used to derive self-organized 3D cell aggregates that mimic the morphological and functional traits of organs in vitro. These so-called organoids were first generated from primary animal and human tissues, then human pluripotent stem cells (hPSCs) arose as a new tool for organoid generation. Due to their self-renewal capacity and differentiation potential, hPSCs are an unlimited source of cells used for organoids. Today, hPSC-derived small intestinal, kidney, brain, liver, and pancreas organoids, among others, have been produced and are promising in vitro human models for diverse applications, including fundamental research, drug development and regenerative medicine. However, achieving in vivo-like organ complexity and maturation in vitro remains a challenge. Current hPSC-derived organoids are often limited in size and developmental state, resembling embryonic or fetal organs rather than adult organs. The use of endothelial cells to vascularize hPSC-derived organoids may represent a key to ensuring oxygen and nutrient distribution in large organoids, thus contributing to the maturation of adult-like organoids through paracrine signaling.Here, we review the current state of the art regarding vascularized hPSC-derived organoids (vhPSC-Orgs). We analyze the progress achieved in the generation of organoids derived from the three primary germ layers (endoderm, mesoderm and ectoderm) exemplified by the pancreas, liver, kidneys and brain. Special attention will be given to the role of the endothelium in the organogenesis of the aforementioned organs, the sources of endothelial cells employed in vhPSC-Org protocols and the remaining challenges preventing the creation of ex vivo functional and vascularized organs.
在过去的 40 年中,细胞培养技术已经发展到能够创建体外多细胞实体,这些实体结合了体内组织和器官的三维复杂性。因此,干细胞和成人祖细胞已被用于衍生自组织的自我组织的 3D 细胞聚集体,这些聚集体模拟了器官的形态和功能特征。这些所谓的类器官最初是从原代动物和人类组织中生成的,然后人类多能干细胞(hPSC)成为生成类器官的新工具。由于其自我更新能力和分化潜力,hPSC 是用于类器官的无限细胞来源。如今,已经生成了源自 hPSC 的小肠、肾脏、大脑、肝脏和胰腺类器官等,并有望成为用于各种应用的体外人类模型,包括基础研究、药物开发和再生医学。然而,在体外实现类似于体内的器官复杂性和成熟度仍然是一个挑战。目前的 hPSC 衍生类器官通常在大小和发育状态上受到限制,类似于胚胎或胎儿器官,而不是成年器官。使用内皮细胞对 hPSC 衍生的类器官进行血管化可能是确保大型类器官中氧气和营养物质分布的关键,从而通过旁分泌信号促进类似于成年的类器官成熟。在这里,我们回顾了关于血管化 hPSC 衍生类器官(vhPSC-Orgs)的最新研究进展。我们分析了从三个原始胚层(内胚层、中胚层和外胚层)衍生的类器官生成方面所取得的进展,以胰腺、肝脏、肾脏和大脑为例。特别关注内皮细胞在上述器官发生中的作用、vhPSC-Org 方案中使用的内皮细胞来源以及阻止创建体外功能和血管化器官的剩余挑战。