Suppr超能文献

Role of adenosine in coronary vasodilation during exercise.

作者信息

Bache R J, Dai X Z, Schwartz J S, Homans D C

机构信息

Department of Medicine, University of Minnesota School of Medicine, Minneapolis 55455.

出版信息

Circ Res. 1988 Apr;62(4):846-53. doi: 10.1161/01.res.62.4.846.

Abstract

This study examined the hypothesis that increases in myocardial blood flow during exercise are mediated by adenosine-induced coronary vasodilation. Active hyperemia associated with graded treadmill exercise and coronary reactive hyperemia were examined in chronically instrumented awake dogs during control conditions, after intracoronary infusion of adenosine deaminase (5 units/kg/min for 10 minutes), and after adenosine receptor blockade with 8-phenyltheophylline. Both adenosine deaminase and 8-phenyltheophylline caused a rightward shift of the dose-response curve to intracoronary adenosine; 8-phenyltheophylline was significantly more potent than adenosine deaminase. Adenosine deaminase caused a 33 +/- 7 to 39 +/- 3% decrease in reactive hyperemia blood flow following coronary occlusions of 5-20 seconds duration, respectively, while 8-phenyltheophylline produced a 40 +/- 6 to 62 +/- 8% decrease in reactive hyperemia. Increasing myocardial oxygen consumption during treadmill exercise was associated with progressive increase of coronary blood flow. Neither adenosine deaminase nor 8-phenyltheophylline attenuated the increase in coronary blood flow or the decrease of coronary vascular resistance during exercise. Neither agent altered the relation between myocardial oxygen consumption and coronary blood flow. Thus, although both adenosine deaminase and 8-phenyltheophylline antagonized coronary vasodilation in response to exogenous adenosine and blunted coronary reactive hyperemia, neither agent impaired coronary vasodilation associated with increased myocardial oxygen requirements produced by exercise. These findings fail to support a substantial role for adenosine in mediating coronary vasodilation during exercise.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验