Suppr超能文献

基于 PEG 的简便方法,结合无标记表面增强拉曼散射和模式识别算法,分离和分类癌症细胞外囊泡和颗粒。

Facile PEG-based isolation and classification of cancer extracellular vesicles and particles with label-free surface-enhanced Raman scattering and pattern recognition algorithm.

机构信息

School of Life Science and Technology, Xidian University, Xi'an 710126, Shaanxi, PR China.

出版信息

Analyst. 2021 Mar 21;146(6):1949-1955. doi: 10.1039/d0an02257h. Epub 2021 Jan 26.

Abstract

Extracellular vesicles and particles (EVPs), which contain the same surface proteins as their mother cells, are promising biomarkers for cancer liquid biopsy. However, most of the isolation methods of EVPs are time-consuming and complicated, and hence, sensitive detection and classification methods are required for EVPs. Here, we report a facile polyethylene glycol (PEG)-based method for isolating and classifying EVPs with label-free surface-enhanced Raman scattering (SERS) and pattern recognition algorithm. There are only three steps in the PEG-based isolation method, and it does not require ultracentrifugation, which makes it a low-cost and easy-to-use method. Three types of common male cancer cell lines, namely leukemia (THP-1), prostate cancer (DU-145), and colorectal cancer (COLO-205), and one healthy male blood sample, were utilized to isolate EVPs. To collect the SERS spectra of EVPs, a novel planar nanomaterial, namely amino molybdenum oxide (AMO) nanoflakes, was applied, with the enhancement factor being obtained as 3.2 × 10. Based on the principal component analysis and support vector machine (PCA-SVM) algorithm, cancer and normal EVPs were classified with 97.4% accuracy. However, among the cancer EVPs, the accuracy, precision, and sensitivity were found to be 90.0%, 90.9%, and 83.3% for THP-1; 86.7%, 80.0%, and 92.3% for DU-145; 96.7%, 83.3%, and 100% for COLO-205, respectively. Thus, this work will improve the isolation, detection, and classification of EVPs and promote the development of cancer liquid biopsies.

摘要

细胞外囊泡和颗粒 (EVPs) 含有与其母细胞相同的表面蛋白,是癌症液体活检有前途的生物标志物。然而,大多数 EVPs 的分离方法既耗时又复杂,因此需要 EVPs 的敏感检测和分类方法。在这里,我们报告了一种基于聚乙二醇 (PEG) 的简便方法,用于分离和分类无标记表面增强拉曼散射 (SERS) 和模式识别算法的 EVPs。PEG 分离方法只有三个步骤,不需要超速离心,因此是一种低成本且易于使用的方法。三种常见的男性癌细胞系,即白血病 (THP-1)、前列腺癌 (DU-145) 和结直肠癌 (COLO-205),以及一个健康的男性血液样本,被用于分离 EVPs。为了收集 EVPs 的 SERS 光谱,应用了一种新型平面纳米材料,即氨基氧化钼 (AMO) 纳米薄片,其增强因子为 3.2×10。基于主成分分析和支持向量机 (PCA-SVM) 算法,癌症和正常的 EVPs 被分类,准确率为 97.4%。然而,在癌症 EVPs 中,THP-1 的准确率、精密度和灵敏度分别为 90.0%、90.9%和 83.3%;DU-145 为 86.7%、80.0%和 92.3%;COLO-205 为 96.7%、83.3%和 100%。因此,这项工作将提高 EVPs 的分离、检测和分类水平,促进癌症液体活检的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验