Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
Department of Otolaryngology - Head and Neck Surgery, University of California, Davis, Sacramento, CA 95817, USA.
Nanoscale. 2021 Sep 17;13(35):14760-14776. doi: 10.1039/d1nr03334d.
Given the emerging diagnostic utility of extracellular vesicles (EVs), it is important to account for non-EV contaminants. Lipoprotein present in EV-enriched isolates may inflate particle counts and decrease sensitivity to biomarkers of interest, skewing chemical analyses and perpetuating downstream issues in labeling or functional analysis. Using label free surface enhanced Raman scattering (SERS), we confirm that three common EV isolation methods (differential ultracentrifugation, density gradient ultracentrifugation, and size exclusion chromatography) yield variable lipoprotein content. We demonstrate that a dual-isolation method is necessary to isolate EVs from the major classes of lipoprotein. However, combining SERS analysis with machine learning assisted classification, we show that the disease state is the main driver of distinction between EV samples, and largely unaffected by choice of isolation. Ultimately, this study describes a convenient SERS assay to retain accurate diagnostic information from clinical samples by overcoming differences in lipoprotein contamination according to isolation method.
鉴于细胞外囊泡 (EVs) 的新兴诊断效用,必须考虑非 EV 污染物。富含 EV 的分离物中的脂蛋白可能会增加颗粒计数并降低对感兴趣的生物标志物的敏感性,从而使化学分析产生偏差,并在标记或功能分析中持续存在下游问题。我们使用无标记的表面增强拉曼散射 (SERS) 证实,三种常见的 EV 分离方法(差速超速离心、密度梯度超速离心和大小排阻色谱)会产生不同的脂蛋白含量。我们证明,需要双重分离方法才能从主要脂蛋白类别中分离 EV。然而,通过将 SERS 分析与机器学习辅助分类相结合,我们表明疾病状态是区分 EV 样本的主要驱动因素,并且受分离方法的选择影响不大。最终,这项研究描述了一种方便的 SERS 测定法,通过根据分离方法克服脂蛋白污染的差异,从临床样本中保留准确的诊断信息。