Suppr超能文献

微生物辅助在真菌衍生的纳米带异质结构上组装TiCT MXene用于超稳定的钠和钾离子存储

Microbe-Assisted Assembly of TiCT MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage.

作者信息

Cao Junming, Sun Ziqi, Li Junzhi, Zhu Yukun, Yuan Zeyu, Zhang Yuming, Li Dongdong, Wang Lili, Han Wei

机构信息

Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, P.R. China.

School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia.

出版信息

ACS Nano. 2021 Feb 23;15(2):3423-3433. doi: 10.1021/acsnano.0c10491. Epub 2021 Jan 26.

Abstract

As a typical family of two-dimensional (2D) materials, MXenes present physiochemical properties and potential for use in energy storage applications. However, MXenes suffer some of the inherent disadvantages of 2D materials, such as severe restacking during processing and service and low capacity of energy storage. Herein, a MXene@N-doped carbonaceous nanofiber structure is designed as the anode for high-performance sodium- and potassium-ion batteries through an bioadsorption strategy; that is, TiCT nanosheets are assembled onto biofungal nanoribbons and converted into a 2D/1D heterostructure. This microorganism-derived 2D MXene-1D N-doped carbonaceous nanofiber structure with fully opened pores and transport channels delivers high reversible capacity and long-term stability to store both Na (349.2 mAh g at 0.1A g for 1000 cycles) and K (201.5 mAh g at 1.0 A g for 1000 cycles). Ion-diffusion kinetics analysis and density functional theory calculations reveal that this porous hybrid structure promotes the conduction and transport of Na and K ions and fully utilizes the inherent advantages of the 2D material. Therefore, this work expands the potential of MXene materials and provides a good strategy to address the challenges of 2D energy storage materials.

摘要

作为典型的二维(2D)材料家族,MXenes展现出物理化学性质以及在储能应用中的潜力。然而,MXenes存在一些二维材料固有的缺点,例如在加工和使用过程中严重的重新堆叠以及储能容量低。在此,通过生物吸附策略设计了一种MXene@N掺杂碳纳米纤维结构作为高性能钠离子和钾离子电池的阳极;也就是说,TiCT纳米片组装在生物真菌纳米带上并转化为二维/一维异质结构。这种具有完全开放的孔隙和传输通道的微生物衍生的二维MXene-一维N掺杂碳纳米纤维结构在存储Na(在0.1A g下1000次循环时为349.2 mAh g)和K(在1.0 A g下1000次循环时为201.5 mAh g)方面都具有高可逆容量和长期稳定性。离子扩散动力学分析和密度泛函理论计算表明,这种多孔混合结构促进了Na和K离子的传导和传输,并充分利用了二维材料的固有优势。因此,这项工作扩展了MXene材料的潜力,并为应对二维储能材料的挑战提供了一个良好的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验