Suppr超能文献

Ti 3 C 2 T X 型 MXene 导电层负载生物衍生的 Fe Se/MXene/碳纳米带作为高性能钠离子和钾离子半/全电池

Ti C T MXene Conductive Layers Supported Bio-Derived Fe Se /MXene/Carbonaceous Nanoribbons for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries.

机构信息

Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China.

State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.

出版信息

Adv Mater. 2021 Aug;33(34):e2101535. doi: 10.1002/adma.202101535. Epub 2021 Jul 19.

Abstract

Owing to their cost-effectiveness and high energy density, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are becoming the leading candidates for the next-generation energy-storage devices replacing lithium-ion batteries. In this work, a novel Fe Se heterostructure is prepared on fungus-derived carbon matrix encapsulated by 2D Ti C T MXene highly conductive layers, which exhibits high specific sodium ion (Na ) and potassium ion (K ) storage capacities of 610.9 and 449.3 mAh g at a current density of 0.1 A g , respectively, and excellent capacity retention at high charge-discharge rates. MXene acts as conductive layers to prevent the restacking and aggregation of Fe Se sheets on fungus-derived carbonaceous nanoribbons, while the natural fungus functions as natural nitrogen/carbon source to provide bionic nanofiber network structural skeleton, providing additional accessible pathways for the high-rate ion transport and satisfying surface-driven contribution ratios at high sweep rates for both Na/K ions storages. In addition, in situ synchrotron diffraction and ex situ X-ray photoelectron spectroscopy measurements are performed to reveal the mechanisms of storage and de-/alloying conversion process of Na in the Fe Se /MXene/carbonaceous nanoribbon heterostructure. As a result, the assembled Na/K full cells containing MXene-supported Fe Se @carbonaceous anodes possess stable large-ion storage capabilities.

摘要

由于其成本效益和高能量密度,钠离子电池 (SIBs) 和钾离子电池 (PIBs) 正成为下一代储能设备的首选,取代锂离子电池。在这项工作中,在二维 Ti 3 C 2 T MXene 高导电性层包裹的真菌衍生碳基质上制备了一种新型的 Fe Se 异质结构,在 0.1 A g 的电流密度下,分别表现出高的钠离子 (Na + ) 和钾离子 (K + ) 存储容量 610.9 和 449.3 mAh g -1 ,并且在高充放电速率下具有出色的容量保持率。MXene 作为导电层,防止 Fe Se 片在真菌衍生的碳纳米带的堆叠和聚集,而天然真菌作为天然氮/碳源,提供仿生纳米纤维网络结构骨架,为高速率离子传输提供了额外的可及途径,并且在高扫速下满足 Na/K 离子存储的表面驱动贡献比。此外,进行了原位同步辐射衍射和非原位 X 射线光电子能谱测量,以揭示 Fe Se /MXene/碳纳米带异质结构中 Na 的存储和脱/合金化转化过程的机制。结果表明,组装的含有 MXene 支撑的 Fe Se @碳质阳极的 Na/K 全电池具有稳定的大离子存储能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验