Suppr超能文献

食源性病原体的机器学习预测:算法开发与验证研究

Machine Learning Prediction of Foodborne Disease Pathogens: Algorithm Development and Validation Study.

作者信息

Wang Hanxue, Cui Wenjuan, Guo Yunchang, Du Yi, Zhou Yuanchun

机构信息

Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.

Chinese Academy of Sciences University, Beijing, China.

出版信息

JMIR Med Inform. 2021 Jan 26;9(1):e24924. doi: 10.2196/24924.

Abstract

BACKGROUND

Foodborne diseases, as a type of disease with a high global incidence, place a heavy burden on public health and social economy. Foodborne pathogens, as the main factor of foodborne diseases, play an important role in the treatment and prevention of foodborne diseases; however, foodborne diseases caused by different pathogens lack specificity in clinical features, and there is a low proportion of clinically actual pathogen detection in real life.

OBJECTIVE

We aimed to analyze foodborne disease case data, select appropriate features based on analysis results, and use machine learning methods to classify foodborne disease pathogens to predict foodborne disease pathogens that have not been tested.

METHODS

We extracted features such as space, time, and exposed food from foodborne disease case data and analyzed the relationship between these features and the foodborne disease pathogens using a variety of machine learning methods to classify foodborne disease pathogens. We compared the results of 4 models to obtain the pathogen prediction model with the highest accuracy.

RESULTS

The gradient boost decision tree model obtained the highest accuracy, with accuracy approaching 69% in identifying 4 pathogens including Salmonella, Norovirus, Escherichia coli, and Vibrio parahaemolyticus. By evaluating the importance of features such as time of illness, geographical longitude and latitude, and diarrhea frequency, we found that they play important roles in classifying the foodborne disease pathogens.

CONCLUSIONS

Data analysis can reflect the distribution of some features of foodborne diseases and the relationship among the features. The classification of pathogens based on the analysis results and machine learning methods can provide beneficial support for clinical auxiliary diagnosis and treatment of foodborne diseases.

摘要

背景

食源性疾病作为全球发病率较高的一类疾病,给公共卫生和社会经济带来了沉重负担。食源性病原体作为食源性疾病的主要因素,在食源性疾病的治疗和预防中发挥着重要作用;然而,由不同病原体引起的食源性疾病在临床特征上缺乏特异性,现实生活中临床实际病原体检测比例较低。

目的

分析食源性疾病病例数据,根据分析结果选择合适的特征,并使用机器学习方法对食源性疾病病原体进行分类,以预测未检测的食源性疾病病原体。

方法

从食源性疾病病例数据中提取空间、时间和暴露食物等特征,并使用多种机器学习方法分析这些特征与食源性疾病病原体之间的关系,以对食源性疾病病原体进行分类。我们比较了4种模型的结果,以获得准确率最高的病原体预测模型。

结果

梯度提升决策树模型获得了最高的准确率,在识别包括沙门氏菌、诺如病毒、大肠杆菌和副溶血性弧菌在内的4种病原体时,准确率接近69%。通过评估发病时间、地理经度和纬度以及腹泻频率等特征的重要性,我们发现它们在食源性疾病病原体分类中发挥着重要作用。

结论

数据分析可以反映食源性疾病的一些特征分布以及特征之间的关系。基于分析结果和机器学习方法对病原体进行分类,可以为食源性疾病的临床辅助诊断和治疗提供有益支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbab/7872834/79bac12774ca/medinform_v9i1e24924_fig1.jpg

相似文献

3
Disease burden of foodborne pathogens in the Netherlands, 2009.
Int J Food Microbiol. 2012 Jun 1;156(3):231-8. doi: 10.1016/j.ijfoodmicro.2012.03.029. Epub 2012 Apr 5.
5
Classification between live and dead foodborne bacteria with hyperspectral microscope imagery and machine learning.
J Microbiol Methods. 2023 Jun;209:106739. doi: 10.1016/j.mimet.2023.106739. Epub 2023 May 13.
6
Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: an expert elicitation.
Foodborne Pathog Dis. 2014 Sep;11(9):727-33. doi: 10.1089/fpd.2014.1746. Epub 2014 Jul 29.
9
Estimates of foodborne illness-related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents.
Foodborne Pathog Dis. 2015 Oct;12(10):820-7. doi: 10.1089/fpd.2015.1966. Epub 2015 Aug 10.

引用本文的文献

1
From COVID-19 to monkeypox: a novel predictive model for emerging infectious diseases.
BioData Min. 2024 Oct 22;17(1):42. doi: 10.1186/s13040-024-00396-8.
3
The potential application of artificial intelligence in veterinary clinical practice and biomedical research.
Front Vet Sci. 2024 Jan 31;11:1347550. doi: 10.3389/fvets.2024.1347550. eCollection 2024.
4
Review of visual analytics methods for food safety risks.
NPJ Sci Food. 2023 Sep 12;7(1):49. doi: 10.1038/s41538-023-00226-x.

本文引用的文献

1
Machine Learning Approaches for Epidemiological Investigations of Food-Borne Disease Outbreaks.
Front Microbiol. 2019 Aug 6;10:1722. doi: 10.3389/fmicb.2019.01722. eCollection 2019.
2
Foodborne Pathogens and Disease Special Issue on the National and International PulseNet Network.
Foodborne Pathog Dis. 2019 Jul;16(7):439-440. doi: 10.1089/fpd.2019.29012.int. Epub 2019 Jun 28.
3
Surveillance for Foodborne Disease Outbreaks-United States, 1988-1992.
J Food Prot. 1997 Oct;60(10):1265-1286. doi: 10.4315/0362-028X-60.10.1265.
4
Foodborne Disease Outbreaks, 5-Year Summary, 1983-1987.
J Food Prot. 1990 Aug;53(8):711-728. doi: 10.4315/0362-028X-53.8.711.
5
Surveillance for Foodborne Disease Outbreaks - United States, 2009-2015.
MMWR Surveill Summ. 2018 Jul 27;67(10):1-11. doi: 10.15585/mmwr.ss6710a1.
6
Identifying Methods for Monitoring Foodborne Illness: Review of Existing Public Health Surveillance Techniques.
JMIR Public Health Surveill. 2018 Jun 6;4(2):e57. doi: 10.2196/publichealth.8218.
7
Discovering foodborne illness in online restaurant reviews.
J Am Med Inform Assoc. 2018 Dec 1;25(12):1586-1592. doi: 10.1093/jamia/ocx093.
8
Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011.
Front Med. 2018 Feb;12(1):48-57. doi: 10.1007/s11684-017-0608-6. Epub 2017 Dec 27.
9
Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database.
J Clin Microbiol. 2016 Aug;54(8):1975-83. doi: 10.1128/JCM.00081-16. Epub 2016 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验