Suppr超能文献

利用 GWAS 和机器学习识别和预测与食源性病原体表型特征相关的遗传变异。

Using GWAS and Machine Learning to Identify and Predict Genetic Variants Associated with Foodborne Bacteria Phenotypic Traits.

机构信息

ACTALIA, La Roche-sur-Foron, France.

ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France.

出版信息

Methods Mol Biol. 2025;2852:223-253. doi: 10.1007/978-1-0716-4100-2_16.

Abstract

One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry. The monitoring of foodborne strains can therefore be facilitated by the use of these genomic markers capable of rapidly providing essential information on isolated strains, such as the source of contamination, risk of illness, potential for biofilm formation, and tolerance or resistance to biocides. The increasing availability of large genome datasets is enhancing the understanding of the genetic basis of complex traits such as host adaptation, virulence, and persistence. Genome-wide association studies have shown very promising results in the discovery of genomic markers that can be integrated into rapid detection tools. In addition, machine learning has successfully predicted phenotypes and classified important traits. Genome-wide association and machine learning tools have therefore the potential to support decision-making circuits intending at reducing the burden of foodborne diseases. The aim of this chapter review is to provide knowledge on the use of these two methods in food microbiology and to recommend their use in the field.

摘要

食品微生物学的主要挑战之一是通过避免分发受细菌污染的食物来预防暴发风险。这需要在整个食品生产链中不断监测流通菌株。细菌基因组包含自然进化的特征和适应性标记,可用于更好地了解病原体在食品工业中的行为。因此,可以使用这些基因组标记来促进对食源性病原体的监测,这些标记能够快速提供有关分离菌株的重要信息,例如污染来源、发病风险、形成生物膜的潜力以及对杀菌剂的耐受性或抗性。越来越多的大型基因组数据集的可用性提高了对宿主适应、毒力和持久性等复杂性状的遗传基础的理解。全基因组关联研究在发现可整合到快速检测工具中的基因组标记方面取得了非常有前景的结果。此外,机器学习已成功预测了表型并对重要性状进行了分类。因此,全基因组关联和机器学习工具有可能支持旨在降低食源性疾病负担的决策电路。本章综述的目的是提供有关这两种方法在食品微生物学中的应用的知识,并建议在该领域使用这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验