Suppr超能文献

载过氧化氢酶的二氧化硅纳米颗粒通过直接表面修饰制备,有望成为缓解缺氧的供氧剂。

Catalase-Loaded Silica Nanoparticles Formulated via Direct Surface Modification as Potential Oxygen Generators for Hypoxia Relief.

机构信息

Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.

Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 10;13(5):5945-5954. doi: 10.1021/acsami.0c19633. Epub 2021 Jan 26.

Abstract

Enzymes are biological catalysts that have many potential industrial and biomedical applications. However, the widespread use of enzymes in the industry has been limited by their instability and poor recovery. In biomedical applications, systemic administration of enzymes has faced two main challenges: limited bioactivity mostly due to rapid degradation by proteases and immunogenic activity, since most enzymes are from nonhuman sources. Herein, we propose a robust enzyme-encapsulation strategy to mitigate these limitations. Catalase (CAT) was encapsulated in nanoporous silica nanoparticles (CAT-SiNPs) by first chemically modifying the enzyme surface with a silica precursor, followed by silica growth and finally poly(ethylene glycol) (PEG) conjugation. The formulation was carried out in mild aqueous conditions and yielded nanoparticles (NPs) with a mean diameter of 230 ± 10 nm and a concentration of 1.3 ± 0.8 × 10 NPs/mL. CAT-SiNPs demonstrated high enzyme activity, optimal protection from proteolysis by proteinase K and trypsin, and excellent stability over time. In addition, a new electrochemical assay was developed to measure CAT activity in a rapid, simple, and accurate manner without interference from chromophore usually present in biological samples. Concentrations of 2.5 × 10 to 80 × 10 CAT-SiNPs/mL not only proved to be nontoxic in cell cultures using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay but also conferred cell protection when cells were exposed to 1 mM hydrogen peroxide (HO). Finally, the ability of CAT-SiNPs to release oxygen (O) when exposed to HO was demonstrated using a rat model. Following the direct injection of CAT-SiNPs in the left kidney, partial pressure of oxygen (pO) increased by more than 30 mmHg compared to the contralateral control kidney during the systemic infusion of safe levels of HO. This pilot study highlights the potential of CAT-SiNPs to generate O to relieve hypoxia in tissues and potentially sensitize tumors against radiation therapy.

摘要

酶是生物催化剂,具有许多潜在的工业和生物医学应用。然而,由于其不稳定性和回收效果不佳,酶在工业中的广泛应用受到了限制。在生物医学应用中,酶的全身给药面临两个主要挑战:由于蛋白酶的快速降解,生物活性有限,大多数酶来自非人类来源,因此具有免疫原性。在此,我们提出了一种稳健的酶封装策略来缓解这些限制。通过首先用硅烷前体化学修饰酶表面,然后进行硅生长,最后进行聚乙二醇(PEG)接枝,将过氧化氢酶(CAT)封装在纳米多孔硅纳米颗粒(CAT-SiNPs)中。制剂是在温和的水相条件下进行的,得到的纳米颗粒(NPs)平均直径为 230±10nm,浓度为 1.3±0.8×10 NPs/mL。CAT-SiNPs 表现出高酶活性、对蛋白酶 K 和胰蛋白酶的蛋白水解的最佳保护作用,以及随时间的优异稳定性。此外,开发了一种新的电化学测定法,以快速、简单和准确的方式测量 CAT 活性,而不会受到通常存在于生物样品中的生色团的干扰。2.5×10 至 80×10 CAT-SiNPs/mL 的浓度不仅在使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)测定法的细胞培养中证明无毒,而且当细胞暴露于 1mM 过氧化氢(HO)时还赋予细胞保护作用。最后,通过使用大鼠模型证明了 CAT-SiNPs 在暴露于 HO 时释放氧气(O)的能力。在将 CAT-SiNPs 直接注射到左肾后,与对侧对照肾相比,在全身输注安全水平的 HO 期间,氧分压(pO)增加了 30mmHg 以上。这项初步研究强调了 CAT-SiNPs 产生 O 以缓解组织缺氧并潜在增强肿瘤对放射治疗的敏感性的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验